ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssopab2i Unicode version

Theorem ssopab2i 4342
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.)
Hypothesis
Ref Expression
ssopab2i.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
ssopab2i  |-  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }

Proof of Theorem ssopab2i
StepHypRef Expression
1 ssopab2 4340 . 2  |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } )
2 ssopab2i.1 . . 3  |-  ( ph  ->  ps )
32ax-gen 1473 . 2  |-  A. y
( ph  ->  ps )
41, 3mpg 1475 1  |-  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    C_ wss 3174   {copab 4120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-in 3180  df-ss 3187  df-opab 4122
This theorem is referenced by:  brab2a  4746  opabssxp  4767  relopabiv  4819  funopab4  5327  ssoprab2i  6057  npsspw  7619  eqgfval  13673
  Copyright terms: Public domain W3C validator