Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssopab2i | Unicode version |
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
ssopab2i.1 |
Ref | Expression |
---|---|
ssopab2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2 4253 | . 2 | |
2 | ssopab2i.1 | . . 3 | |
3 | 2 | ax-gen 1437 | . 2 |
4 | 1, 3 | mpg 1439 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wss 3116 copab 4042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 df-opab 4044 |
This theorem is referenced by: brab2a 4657 opabssxp 4678 funopab4 5225 ssoprab2i 5931 npsspw 7412 |
Copyright terms: Public domain | W3C validator |