ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resabs1d Unicode version

Theorem resabs1d 4976
Description: Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
resabs1d.b  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
resabs1d  |-  ( ph  ->  ( ( A  |`  C )  |`  B )  =  ( A  |`  B ) )

Proof of Theorem resabs1d
StepHypRef Expression
1 resabs1d.b . 2  |-  ( ph  ->  B  C_  C )
2 resabs1 4975 . 2  |-  ( B 
C_  C  ->  (
( A  |`  C )  |`  B )  =  ( A  |`  B )
)
31, 2syl 14 1  |-  ( ph  ->  ( ( A  |`  C )  |`  B )  =  ( A  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3157    |` cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669  df-rel 4670  df-res 4675
This theorem is referenced by:  resubmet  14792
  Copyright terms: Public domain W3C validator