ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resabs1d Unicode version

Theorem resabs1d 4914
Description: Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
resabs1d.b  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
resabs1d  |-  ( ph  ->  ( ( A  |`  C )  |`  B )  =  ( A  |`  B ) )

Proof of Theorem resabs1d
StepHypRef Expression
1 resabs1d.b . 2  |-  ( ph  ->  B  C_  C )
2 resabs1 4913 . 2  |-  ( B 
C_  C  ->  (
( A  |`  C )  |`  B )  =  ( A  |`  B )
)
31, 2syl 14 1  |-  ( ph  ->  ( ( A  |`  C )  |`  B )  =  ( A  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    C_ wss 3116    |` cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610  df-rel 4611  df-res 4616
This theorem is referenced by:  resubmet  13188
  Copyright terms: Public domain W3C validator