ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resabs1d Unicode version

Theorem resabs1d 4949
Description: Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
resabs1d.b  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
resabs1d  |-  ( ph  ->  ( ( A  |`  C )  |`  B )  =  ( A  |`  B ) )

Proof of Theorem resabs1d
StepHypRef Expression
1 resabs1d.b . 2  |-  ( ph  ->  B  C_  C )
2 resabs1 4948 . 2  |-  ( B 
C_  C  ->  (
( A  |`  C )  |`  B )  =  ( A  |`  B )
)
31, 2syl 14 1  |-  ( ph  ->  ( ( A  |`  C )  |`  B )  =  ( A  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    C_ wss 3141    |` cres 4640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-opab 4077  df-xp 4644  df-rel 4645  df-res 4650
This theorem is referenced by:  resubmet  14344
  Copyright terms: Public domain W3C validator