ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resabs2 Unicode version

Theorem resabs2 4990
Description: Absorption law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
resabs2  |-  ( B 
C_  C  ->  (
( A  |`  B )  |`  C )  =  ( A  |`  B )
)

Proof of Theorem resabs2
StepHypRef Expression
1 rescom 4984 . 2  |-  ( ( A  |`  B )  |`  C )  =  ( ( A  |`  C )  |`  B )
2 resabs1 4988 . 2  |-  ( B 
C_  C  ->  (
( A  |`  C )  |`  B )  =  ( A  |`  B )
)
31, 2eqtrid 2250 1  |-  ( B 
C_  C  ->  (
( A  |`  B )  |`  C )  =  ( A  |`  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166    |` cres 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106  df-xp 4681  df-rel 4682  df-res 4687
This theorem is referenced by:  residm  4991
  Copyright terms: Public domain W3C validator