ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resabs2 Unicode version

Theorem resabs2 4959
Description: Absorption law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
resabs2  |-  ( B 
C_  C  ->  (
( A  |`  B )  |`  C )  =  ( A  |`  B )
)

Proof of Theorem resabs2
StepHypRef Expression
1 rescom 4953 . 2  |-  ( ( A  |`  B )  |`  C )  =  ( ( A  |`  C )  |`  B )
2 resabs1 4957 . 2  |-  ( B 
C_  C  ->  (
( A  |`  C )  |`  B )  =  ( A  |`  B )
)
31, 2eqtrid 2234 1  |-  ( B 
C_  C  ->  (
( A  |`  B )  |`  C )  =  ( A  |`  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3144    |` cres 4649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-opab 4083  df-xp 4653  df-rel 4654  df-res 4659
This theorem is referenced by:  residm  4960
  Copyright terms: Public domain W3C validator