ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu4 Unicode version

Theorem reu4 2974
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.)
Hypothesis
Ref Expression
rmo4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
reu4  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  A. x  e.  A  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem reu4
StepHypRef Expression
1 reu5 2726 . 2  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E* x  e.  A  ph ) )
2 rmo4.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
32rmo4 2973 . . 3  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) )
43anbi2i 457 . 2  |-  ( ( E. x  e.  A  ph 
/\  E* x  e.  A  ph )  <->  ( E. x  e.  A  ph  /\  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) ) )
51, 4bitri 184 1  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  A. x  e.  A  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wral 2486   E.wrex 2487   E!wreu 2488   E*wrmo 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-cleq 2200  df-clel 2203  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494
This theorem is referenced by:  reuind  2985  receuap  8777  lbreu  9053  cju  9069  ndvdssub  12356  qredeu  12534
  Copyright terms: Public domain W3C validator