ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu4 Unicode version

Theorem reu4 2958
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.)
Hypothesis
Ref Expression
rmo4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
reu4  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  A. x  e.  A  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem reu4
StepHypRef Expression
1 reu5 2714 . 2  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E* x  e.  A  ph ) )
2 rmo4.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
32rmo4 2957 . . 3  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) )
43anbi2i 457 . 2  |-  ( ( E. x  e.  A  ph 
/\  E* x  e.  A  ph )  <->  ( E. x  e.  A  ph  /\  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) ) )
51, 4bitri 184 1  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  A. x  e.  A  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wral 2475   E.wrex 2476   E!wreu 2477   E*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-cleq 2189  df-clel 2192  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483
This theorem is referenced by:  reuind  2969  receuap  8696  lbreu  8972  cju  8988  ndvdssub  12095  qredeu  12265
  Copyright terms: Public domain W3C validator