ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  receuap Unicode version

Theorem receuap 8744
Description: Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
receuap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem receuap
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 recexap 8728 . . . 4  |-  ( ( B  e.  CC  /\  B #  0 )  ->  E. y  e.  CC  ( B  x.  y )  =  1 )
213adant1 1018 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E. y  e.  CC  ( B  x.  y )  =  1 )
3 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
y  e.  CC )
4 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  ->  A  e.  CC )
53, 4mulcld 8095 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
( y  x.  A
)  e.  CC )
6 oveq1 5953 . . . . . . . 8  |-  ( ( B  x.  y )  =  1  ->  (
( B  x.  y
)  x.  A )  =  ( 1  x.  A ) )
76ad2antll 491 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
( ( B  x.  y )  x.  A
)  =  ( 1  x.  A ) )
8 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  ->  B  e.  CC )
98, 3, 4mulassd 8098 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
( ( B  x.  y )  x.  A
)  =  ( B  x.  ( y  x.  A ) ) )
104mulid2d 8093 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
( 1  x.  A
)  =  A )
117, 9, 103eqtr3d 2246 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
( B  x.  (
y  x.  A ) )  =  A )
12 oveq2 5954 . . . . . . . 8  |-  ( x  =  ( y  x.  A )  ->  ( B  x.  x )  =  ( B  x.  ( y  x.  A
) ) )
1312eqeq1d 2214 . . . . . . 7  |-  ( x  =  ( y  x.  A )  ->  (
( B  x.  x
)  =  A  <->  ( B  x.  ( y  x.  A
) )  =  A ) )
1413rspcev 2877 . . . . . 6  |-  ( ( ( y  x.  A
)  e.  CC  /\  ( B  x.  (
y  x.  A ) )  =  A )  ->  E. x  e.  CC  ( B  x.  x
)  =  A )
155, 11, 14syl2anc 411 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  ->  E. x  e.  CC  ( B  x.  x
)  =  A )
1615rexlimdvaa 2624 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. y  e.  CC  ( B  x.  y )  =  1  ->  E. x  e.  CC  ( B  x.  x
)  =  A ) )
17163adant3 1020 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( E. y  e.  CC  ( B  x.  y
)  =  1  ->  E. x  e.  CC  ( B  x.  x
)  =  A ) )
182, 17mpd 13 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E. x  e.  CC  ( B  x.  x )  =  A )
19 eqtr3 2225 . . . . . . 7  |-  ( ( ( B  x.  x
)  =  A  /\  ( B  x.  y
)  =  A )  ->  ( B  x.  x )  =  ( B  x.  y ) )
20 mulcanap 8740 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  -> 
( ( B  x.  x )  =  ( B  x.  y )  <-> 
x  =  y ) )
2119, 20imbitrid 154 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  -> 
( ( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) )
22213expa 1206 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  (
( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) )
2322expcom 116 . . . 4  |-  ( ( B  e.  CC  /\  B #  0 )  ->  (
( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) ) )
24233adant1 1018 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) ) )
2524ralrimivv 2587 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  A. x  e.  CC  A. y  e.  CC  ( ( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) )
26 oveq2 5954 . . . 4  |-  ( x  =  y  ->  ( B  x.  x )  =  ( B  x.  y ) )
2726eqeq1d 2214 . . 3  |-  ( x  =  y  ->  (
( B  x.  x
)  =  A  <->  ( B  x.  y )  =  A ) )
2827reu4 2967 . 2  |-  ( E! x  e.  CC  ( B  x.  x )  =  A  <->  ( E. x  e.  CC  ( B  x.  x )  =  A  /\  A. x  e.  CC  A. y  e.  CC  ( ( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) ) )
2918, 25, 28sylanbrc 417 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   E!wreu 2486   class class class wbr 4045  (class class class)co 5946   CCcc 7925   0cc0 7927   1c1 7928    x. cmul 7932   # cap 8656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657
This theorem is referenced by:  divvalap  8749  divmulap  8750  divclap  8753
  Copyright terms: Public domain W3C validator