Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > receuap | Unicode version |
Description: Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.) |
Ref | Expression |
---|---|
receuap | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recexap 8558 | . . . 4 # | |
2 | 1 | 3adant1 1010 | . . 3 # |
3 | simprl 526 | . . . . . . 7 | |
4 | simpll 524 | . . . . . . 7 | |
5 | 3, 4 | mulcld 7927 | . . . . . 6 |
6 | oveq1 5857 | . . . . . . . 8 | |
7 | 6 | ad2antll 488 | . . . . . . 7 |
8 | simplr 525 | . . . . . . . 8 | |
9 | 8, 3, 4 | mulassd 7930 | . . . . . . 7 |
10 | 4 | mulid2d 7925 | . . . . . . 7 |
11 | 7, 9, 10 | 3eqtr3d 2211 | . . . . . 6 |
12 | oveq2 5858 | . . . . . . . 8 | |
13 | 12 | eqeq1d 2179 | . . . . . . 7 |
14 | 13 | rspcev 2834 | . . . . . 6 |
15 | 5, 11, 14 | syl2anc 409 | . . . . 5 |
16 | 15 | rexlimdvaa 2588 | . . . 4 |
17 | 16 | 3adant3 1012 | . . 3 # |
18 | 2, 17 | mpd 13 | . 2 # |
19 | eqtr3 2190 | . . . . . . 7 | |
20 | mulcanap 8570 | . . . . . . 7 # | |
21 | 19, 20 | syl5ib 153 | . . . . . 6 # |
22 | 21 | 3expa 1198 | . . . . 5 # |
23 | 22 | expcom 115 | . . . 4 # |
24 | 23 | 3adant1 1010 | . . 3 # |
25 | 24 | ralrimivv 2551 | . 2 # |
26 | oveq2 5858 | . . . 4 | |
27 | 26 | eqeq1d 2179 | . . 3 |
28 | 27 | reu4 2924 | . 2 |
29 | 18, 25, 28 | sylanbrc 415 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 wreu 2450 class class class wbr 3987 (class class class)co 5850 cc 7759 cc0 7761 c1 7762 cmul 7766 # cap 8487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 |
This theorem is referenced by: divvalap 8578 divmulap 8579 divclap 8582 |
Copyright terms: Public domain | W3C validator |