ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  receuap Unicode version

Theorem receuap 8696
Description: Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
receuap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem receuap
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 recexap 8680 . . . 4  |-  ( ( B  e.  CC  /\  B #  0 )  ->  E. y  e.  CC  ( B  x.  y )  =  1 )
213adant1 1017 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E. y  e.  CC  ( B  x.  y )  =  1 )
3 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
y  e.  CC )
4 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  ->  A  e.  CC )
53, 4mulcld 8047 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
( y  x.  A
)  e.  CC )
6 oveq1 5929 . . . . . . . 8  |-  ( ( B  x.  y )  =  1  ->  (
( B  x.  y
)  x.  A )  =  ( 1  x.  A ) )
76ad2antll 491 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
( ( B  x.  y )  x.  A
)  =  ( 1  x.  A ) )
8 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  ->  B  e.  CC )
98, 3, 4mulassd 8050 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
( ( B  x.  y )  x.  A
)  =  ( B  x.  ( y  x.  A ) ) )
104mulid2d 8045 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
( 1  x.  A
)  =  A )
117, 9, 103eqtr3d 2237 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  -> 
( B  x.  (
y  x.  A ) )  =  A )
12 oveq2 5930 . . . . . . . 8  |-  ( x  =  ( y  x.  A )  ->  ( B  x.  x )  =  ( B  x.  ( y  x.  A
) ) )
1312eqeq1d 2205 . . . . . . 7  |-  ( x  =  ( y  x.  A )  ->  (
( B  x.  x
)  =  A  <->  ( B  x.  ( y  x.  A
) )  =  A ) )
1413rspcev 2868 . . . . . 6  |-  ( ( ( y  x.  A
)  e.  CC  /\  ( B  x.  (
y  x.  A ) )  =  A )  ->  E. x  e.  CC  ( B  x.  x
)  =  A )
155, 11, 14syl2anc 411 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( B  x.  y )  =  1 ) )  ->  E. x  e.  CC  ( B  x.  x
)  =  A )
1615rexlimdvaa 2615 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. y  e.  CC  ( B  x.  y )  =  1  ->  E. x  e.  CC  ( B  x.  x
)  =  A ) )
17163adant3 1019 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( E. y  e.  CC  ( B  x.  y
)  =  1  ->  E. x  e.  CC  ( B  x.  x
)  =  A ) )
182, 17mpd 13 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E. x  e.  CC  ( B  x.  x )  =  A )
19 eqtr3 2216 . . . . . . 7  |-  ( ( ( B  x.  x
)  =  A  /\  ( B  x.  y
)  =  A )  ->  ( B  x.  x )  =  ( B  x.  y ) )
20 mulcanap 8692 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  -> 
( ( B  x.  x )  =  ( B  x.  y )  <-> 
x  =  y ) )
2119, 20imbitrid 154 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  -> 
( ( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) )
22213expa 1205 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  (
( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) )
2322expcom 116 . . . 4  |-  ( ( B  e.  CC  /\  B #  0 )  ->  (
( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) ) )
24233adant1 1017 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) ) )
2524ralrimivv 2578 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  A. x  e.  CC  A. y  e.  CC  ( ( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) )
26 oveq2 5930 . . . 4  |-  ( x  =  y  ->  ( B  x.  x )  =  ( B  x.  y ) )
2726eqeq1d 2205 . . 3  |-  ( x  =  y  ->  (
( B  x.  x
)  =  A  <->  ( B  x.  y )  =  A ) )
2827reu4 2958 . 2  |-  ( E! x  e.  CC  ( B  x.  x )  =  A  <->  ( E. x  e.  CC  ( B  x.  x )  =  A  /\  A. x  e.  CC  A. y  e.  CC  ( ( ( B  x.  x )  =  A  /\  ( B  x.  y )  =  A )  ->  x  =  y ) ) )
2918, 25, 28sylanbrc 417 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   E!wreu 2477   class class class wbr 4033  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    x. cmul 7884   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by:  divvalap  8701  divmulap  8702  divclap  8705
  Copyright terms: Public domain W3C validator