Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > receuap | Unicode version |
Description: Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.) |
Ref | Expression |
---|---|
receuap | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recexap 8571 | . . . 4 # | |
2 | 1 | 3adant1 1010 | . . 3 # |
3 | simprl 526 | . . . . . . 7 | |
4 | simpll 524 | . . . . . . 7 | |
5 | 3, 4 | mulcld 7940 | . . . . . 6 |
6 | oveq1 5860 | . . . . . . . 8 | |
7 | 6 | ad2antll 488 | . . . . . . 7 |
8 | simplr 525 | . . . . . . . 8 | |
9 | 8, 3, 4 | mulassd 7943 | . . . . . . 7 |
10 | 4 | mulid2d 7938 | . . . . . . 7 |
11 | 7, 9, 10 | 3eqtr3d 2211 | . . . . . 6 |
12 | oveq2 5861 | . . . . . . . 8 | |
13 | 12 | eqeq1d 2179 | . . . . . . 7 |
14 | 13 | rspcev 2834 | . . . . . 6 |
15 | 5, 11, 14 | syl2anc 409 | . . . . 5 |
16 | 15 | rexlimdvaa 2588 | . . . 4 |
17 | 16 | 3adant3 1012 | . . 3 # |
18 | 2, 17 | mpd 13 | . 2 # |
19 | eqtr3 2190 | . . . . . . 7 | |
20 | mulcanap 8583 | . . . . . . 7 # | |
21 | 19, 20 | syl5ib 153 | . . . . . 6 # |
22 | 21 | 3expa 1198 | . . . . 5 # |
23 | 22 | expcom 115 | . . . 4 # |
24 | 23 | 3adant1 1010 | . . 3 # |
25 | 24 | ralrimivv 2551 | . 2 # |
26 | oveq2 5861 | . . . 4 | |
27 | 26 | eqeq1d 2179 | . . 3 |
28 | 27 | reu4 2924 | . 2 |
29 | 18, 25, 28 | sylanbrc 415 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 wreu 2450 class class class wbr 3989 (class class class)co 5853 cc 7772 cc0 7774 c1 7775 cmul 7779 # cap 8500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 |
This theorem is referenced by: divvalap 8591 divmulap 8592 divclap 8595 |
Copyright terms: Public domain | W3C validator |