| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rmo4 | Unicode version | ||
| Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| rmo4.1 |
|
| Ref | Expression |
|---|---|
| rmo4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 2516 |
. 2
| |
| 2 | an4 586 |
. . . . . . . . 9
| |
| 3 | ancom 266 |
. . . . . . . . . 10
| |
| 4 | 3 | anbi1i 458 |
. . . . . . . . 9
|
| 5 | 2, 4 | bitri 184 |
. . . . . . . 8
|
| 6 | 5 | imbi1i 238 |
. . . . . . 7
|
| 7 | impexp 263 |
. . . . . . 7
| |
| 8 | impexp 263 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | 3bitri 206 |
. . . . . 6
|
| 10 | 9 | albii 1516 |
. . . . 5
|
| 11 | df-ral 2513 |
. . . . 5
| |
| 12 | r19.21v 2607 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3bitr2i 208 |
. . . 4
|
| 14 | 13 | albii 1516 |
. . 3
|
| 15 | eleq1 2292 |
. . . . 5
| |
| 16 | rmo4.1 |
. . . . 5
| |
| 17 | 15, 16 | anbi12d 473 |
. . . 4
|
| 18 | 17 | mo4 2139 |
. . 3
|
| 19 | df-ral 2513 |
. . 3
| |
| 20 | 14, 18, 19 | 3bitr4i 212 |
. 2
|
| 21 | 1, 20 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-cleq 2222 df-clel 2225 df-ral 2513 df-rmo 2516 |
| This theorem is referenced by: reu4 2997 disjnim 4072 supmoti 7156 lteupri 7800 elrealeu 8012 rereceu 8072 exbtwnz 10465 rsqrmo 11533 divalglemeunn 12427 divalglemeuneg 12429 bezoutlemeu 12523 pw2dvdseu 12685 mgmidmo 13400 mndinvmod 13473 dedekindeu 15291 dedekindicclemicc 15300 |
| Copyright terms: Public domain | W3C validator |