ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo4 Unicode version

Theorem rmo4 2945
Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmo4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rmo4  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem rmo4
StepHypRef Expression
1 df-rmo 2476 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
2 an4 586 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  /\  (
y  e.  A  /\  ps ) )  <->  ( (
x  e.  A  /\  y  e.  A )  /\  ( ph  /\  ps ) ) )
3 ancom 266 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  <->  ( y  e.  A  /\  x  e.  A )
)
43anbi1i 458 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( ph  /\ 
ps ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  ps ) ) )
52, 4bitri 184 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ph )  /\  (
y  e.  A  /\  ps ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  ps ) ) )
65imbi1i 238 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  ph )  /\  ( y  e.  A  /\  ps ) )  ->  x  =  y )  <->  ( ( ( y  e.  A  /\  x  e.  A )  /\  ( ph  /\  ps ) )  ->  x  =  y ) )
7 impexp 263 . . . . . . 7  |-  ( ( ( ( y  e.  A  /\  x  e.  A )  /\  ( ph  /\  ps ) )  ->  x  =  y )  <->  ( ( y  e.  A  /\  x  e.  A )  ->  (
( ph  /\  ps )  ->  x  =  y ) ) )
8 impexp 263 . . . . . . 7  |-  ( ( ( y  e.  A  /\  x  e.  A
)  ->  ( ( ph  /\  ps )  ->  x  =  y )
)  <->  ( y  e.  A  ->  ( x  e.  A  ->  ( (
ph  /\  ps )  ->  x  =  y ) ) ) )
96, 7, 83bitri 206 . . . . . 6  |-  ( ( ( ( x  e.  A  /\  ph )  /\  ( y  e.  A  /\  ps ) )  ->  x  =  y )  <->  ( y  e.  A  -> 
( x  e.  A  ->  ( ( ph  /\  ps )  ->  x  =  y ) ) ) )
109albii 1481 . . . . 5  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  ( y  e.  A  /\  ps ) )  ->  x  =  y )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  ps )  ->  x  =  y ) ) ) )
11 df-ral 2473 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  ps )  ->  x  =  y ) )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  ps )  ->  x  =  y ) ) ) )
12 r19.21v 2567 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  ps )  ->  x  =  y ) )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y )
) )
1310, 11, 123bitr2i 208 . . . 4  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  ( y  e.  A  /\  ps ) )  ->  x  =  y )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y )
) )
1413albii 1481 . . 3  |-  ( A. x A. y ( ( ( x  e.  A  /\  ph )  /\  (
y  e.  A  /\  ps ) )  ->  x  =  y )  <->  A. x
( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y ) ) )
15 eleq1 2252 . . . . 5  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
16 rmo4.1 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
1715, 16anbi12d 473 . . . 4  |-  ( x  =  y  ->  (
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  ps )
) )
1817mo4 2099 . . 3  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x A. y ( ( ( x  e.  A  /\  ph )  /\  ( y  e.  A  /\  ps ) )  ->  x  =  y )
)
19 df-ral 2473 . . 3  |-  ( A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y )
) )
2014, 18, 193bitr4i 212 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) )
211, 20bitri 184 1  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   E*wmo 2039    e. wcel 2160   A.wral 2468   E*wrmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-cleq 2182  df-clel 2185  df-ral 2473  df-rmo 2476
This theorem is referenced by:  reu4  2946  disjnim  4009  supmoti  7012  lteupri  7636  elrealeu  7848  rereceu  7908  exbtwnz  10271  rsqrmo  11056  divalglemeunn  11946  divalglemeuneg  11948  bezoutlemeu  12028  pw2dvdseu  12188  mgmidmo  12821  mndinvmod  12879  dedekindeu  14505  dedekindicclemicc  14514
  Copyright terms: Public domain W3C validator