ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu7 Unicode version

Theorem reu7 2998
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
Hypothesis
Ref Expression
rmo4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
reu7  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem reu7
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 reu3 2993 . 2  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z ) ) )
2 rmo4.1 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3 equequ1 1758 . . . . . . . 8  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )
4 equcom 1752 . . . . . . . 8  |-  ( y  =  z  <->  z  =  y )
53, 4bitrdi 196 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  z  <->  z  =  y ) )
62, 5imbi12d 234 . . . . . 6  |-  ( x  =  y  ->  (
( ph  ->  x  =  z )  <->  ( ps  ->  z  =  y ) ) )
76cbvralv 2765 . . . . 5  |-  ( A. x  e.  A  ( ph  ->  x  =  z )  <->  A. y  e.  A  ( ps  ->  z  =  y ) )
87rexbii 2537 . . . 4  |-  ( E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z )  <->  E. z  e.  A  A. y  e.  A  ( ps  ->  z  =  y ) )
9 equequ1 1758 . . . . . . 7  |-  ( z  =  x  ->  (
z  =  y  <->  x  =  y ) )
109imbi2d 230 . . . . . 6  |-  ( z  =  x  ->  (
( ps  ->  z  =  y )  <->  ( ps  ->  x  =  y ) ) )
1110ralbidv 2530 . . . . 5  |-  ( z  =  x  ->  ( A. y  e.  A  ( ps  ->  z  =  y )  <->  A. y  e.  A  ( ps  ->  x  =  y ) ) )
1211cbvrexv 2766 . . . 4  |-  ( E. z  e.  A  A. y  e.  A  ( ps  ->  z  =  y )  <->  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) )
138, 12bitri 184 . . 3  |-  ( E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z )  <->  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) )
1413anbi2i 457 . 2  |-  ( ( E. x  e.  A  ph 
/\  E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z ) )  <->  ( E. x  e.  A  ph  /\  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) ) )
151, 14bitri 184 1  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wral 2508   E.wrex 2509   E!wreu 2510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator