Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reu7 | Unicode version |
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
Ref | Expression |
---|---|
rmo4.1 |
Ref | Expression |
---|---|
reu7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu3 2902 | . 2 | |
2 | rmo4.1 | . . . . . . 7 | |
3 | equequ1 1692 | . . . . . . . 8 | |
4 | equcom 1686 | . . . . . . . 8 | |
5 | 3, 4 | bitrdi 195 | . . . . . . 7 |
6 | 2, 5 | imbi12d 233 | . . . . . 6 |
7 | 6 | cbvralv 2680 | . . . . 5 |
8 | 7 | rexbii 2464 | . . . 4 |
9 | equequ1 1692 | . . . . . . 7 | |
10 | 9 | imbi2d 229 | . . . . . 6 |
11 | 10 | ralbidv 2457 | . . . . 5 |
12 | 11 | cbvrexv 2681 | . . . 4 |
13 | 8, 12 | bitri 183 | . . 3 |
14 | 13 | anbi2i 453 | . 2 |
15 | 1, 14 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wral 2435 wrex 2436 wreu 2437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |