ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divfnzn Unicode version

Theorem divfnzn 9559
Description: Division restricted to  ZZ  X.  NN is a function. Given excluded middle, it would be easy to prove this for  CC 
X.  ( CC  \  { 0 } ). The key difference is that an element of  NN is apart from zero, whereas being an element of 
CC  \  { 0 } implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
Assertion
Ref Expression
divfnzn  |-  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )

Proof of Theorem divfnzn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 9196 . . . . . . 7  |-  ( x  e.  ZZ  ->  x  e.  CC )
21ad2antrr 480 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  x  e.  CC )
3 nncn 8865 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
43ad2antlr 481 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  y  e.  CC )
5 simpr 109 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  z  e.  CC )
6 nnap0 8886 . . . . . . 7  |-  ( y  e.  NN  ->  y #  0 )
76ad2antlr 481 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  y #  0 )
82, 4, 5, 7divmulapd 8708 . . . . 5  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  ( ( x  /  y )  =  z  <->  ( y  x.  z )  =  x ) )
98riotabidva 5814 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( x  /  y
)  =  z )  =  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
10 eqcom 2167 . . . . . . 7  |-  ( z  =  ( x  / 
y )  <->  ( x  /  y )  =  z )
1110a1i 9 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( z  =  ( x  /  y )  <-> 
( x  /  y
)  =  z ) )
1211riotabidv 5800 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  =  ( iota_ z  e.  CC  ( x  / 
y )  =  z ) )
13 simpl 108 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  x  e.  CC )
143adantl 275 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  y  e.  CC )
156adantl 275 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  y #  0 )
1613, 14, 15divclapd 8686 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  ( x  /  y
)  e.  CC )
17 reueq 2925 . . . . . . . 8  |-  ( ( x  /  y )  e.  CC  <->  E! z  e.  CC  z  =  ( x  /  y ) )
1816, 17sylib 121 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  E! z  e.  CC  z  =  ( x  /  y ) )
19 riotacl 5812 . . . . . . 7  |-  ( E! z  e.  CC  z  =  ( x  / 
y )  ->  ( iota_ z  e.  CC  z  =  ( x  / 
y ) )  e.  CC )
2018, 19syl 14 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  e.  CC )
211, 20sylan 281 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  e.  CC )
2212, 21eqeltrrd 2244 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( x  /  y
)  =  z )  e.  CC )
239, 22eqeltrrd 2244 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x )  e.  CC )
2423rgen2 2552 . 2  |-  A. x  e.  ZZ  A. y  e.  NN  ( iota_ z  e.  CC  ( y  x.  z )  =  x )  e.  CC
25 df-div 8569 . . . . 5  |-  /  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
2625reseq1i 4880 . . . 4  |-  (  /  |`  ( ZZ  X.  NN ) )  =  ( ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )  |`  ( ZZ  X.  NN ) )
27 zsscn 9199 . . . . 5  |-  ZZ  C_  CC
28 nncn 8865 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  CC )
29 nnne0 8885 . . . . . . 7  |-  ( x  e.  NN  ->  x  =/=  0 )
30 eldifsn 3703 . . . . . . 7  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
3128, 29, 30sylanbrc 414 . . . . . 6  |-  ( x  e.  NN  ->  x  e.  ( CC  \  {
0 } ) )
3231ssriv 3146 . . . . 5  |-  NN  C_  ( CC  \  { 0 } )
33 resmpo 5940 . . . . 5  |-  ( ( ZZ  C_  CC  /\  NN  C_  ( CC  \  {
0 } ) )  ->  ( ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ ,  y  e.  NN  |->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) ) )
3427, 32, 33mp2an 423 . . . 4  |-  ( ( x  e.  CC , 
y  e.  ( CC 
\  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ ,  y  e.  NN  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
3526, 34eqtri 2186 . . 3  |-  (  /  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ , 
y  e.  NN  |->  (
iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
3635fnmpo 6170 . 2  |-  ( A. x  e.  ZZ  A. y  e.  NN  ( iota_ z  e.  CC  ( y  x.  z )  =  x )  e.  CC  ->  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN ) )
3724, 36ax-mp 5 1  |-  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136    =/= wne 2336   A.wral 2444   E!wreu 2446    \ cdif 3113    C_ wss 3116   {csn 3576   class class class wbr 3982    X. cxp 4602    |` cres 4606    Fn wfn 5183   iota_crio 5797  (class class class)co 5842    e. cmpo 5844   CCcc 7751   0cc0 7753    x. cmul 7758   # cap 8479    / cdiv 8568   NNcn 8857   ZZcz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-z 9192
This theorem is referenced by:  elq  9560  qnnen  12364
  Copyright terms: Public domain W3C validator