ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divfnzn Unicode version

Theorem divfnzn 9816
Description: Division restricted to  ZZ  X.  NN is a function. Given excluded middle, it would be easy to prove this for  CC 
X.  ( CC  \  { 0 } ). The key difference is that an element of  NN is apart from zero, whereas being an element of 
CC  \  { 0 } implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
Assertion
Ref Expression
divfnzn  |-  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )

Proof of Theorem divfnzn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 9451 . . . . . . 7  |-  ( x  e.  ZZ  ->  x  e.  CC )
21ad2antrr 488 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  x  e.  CC )
3 nncn 9118 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
43ad2antlr 489 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  y  e.  CC )
5 simpr 110 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  z  e.  CC )
6 nnap0 9139 . . . . . . 7  |-  ( y  e.  NN  ->  y #  0 )
76ad2antlr 489 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  y #  0 )
82, 4, 5, 7divmulapd 8959 . . . . 5  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  ( ( x  /  y )  =  z  <->  ( y  x.  z )  =  x ) )
98riotabidva 5972 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( x  /  y
)  =  z )  =  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
10 eqcom 2231 . . . . . . 7  |-  ( z  =  ( x  / 
y )  <->  ( x  /  y )  =  z )
1110a1i 9 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( z  =  ( x  /  y )  <-> 
( x  /  y
)  =  z ) )
1211riotabidv 5956 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  =  ( iota_ z  e.  CC  ( x  / 
y )  =  z ) )
13 simpl 109 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  x  e.  CC )
143adantl 277 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  y  e.  CC )
156adantl 277 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  y #  0 )
1613, 14, 15divclapd 8937 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  ( x  /  y
)  e.  CC )
17 reueq 3002 . . . . . . . 8  |-  ( ( x  /  y )  e.  CC  <->  E! z  e.  CC  z  =  ( x  /  y ) )
1816, 17sylib 122 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  E! z  e.  CC  z  =  ( x  /  y ) )
19 riotacl 5970 . . . . . . 7  |-  ( E! z  e.  CC  z  =  ( x  / 
y )  ->  ( iota_ z  e.  CC  z  =  ( x  / 
y ) )  e.  CC )
2018, 19syl 14 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  e.  CC )
211, 20sylan 283 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  e.  CC )
2212, 21eqeltrrd 2307 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( x  /  y
)  =  z )  e.  CC )
239, 22eqeltrrd 2307 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x )  e.  CC )
2423rgen2 2616 . 2  |-  A. x  e.  ZZ  A. y  e.  NN  ( iota_ z  e.  CC  ( y  x.  z )  =  x )  e.  CC
25 df-div 8820 . . . . 5  |-  /  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
2625reseq1i 5001 . . . 4  |-  (  /  |`  ( ZZ  X.  NN ) )  =  ( ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )  |`  ( ZZ  X.  NN ) )
27 zsscn 9454 . . . . 5  |-  ZZ  C_  CC
28 nncn 9118 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  CC )
29 nnne0 9138 . . . . . . 7  |-  ( x  e.  NN  ->  x  =/=  0 )
30 eldifsn 3795 . . . . . . 7  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
3128, 29, 30sylanbrc 417 . . . . . 6  |-  ( x  e.  NN  ->  x  e.  ( CC  \  {
0 } ) )
3231ssriv 3228 . . . . 5  |-  NN  C_  ( CC  \  { 0 } )
33 resmpo 6102 . . . . 5  |-  ( ( ZZ  C_  CC  /\  NN  C_  ( CC  \  {
0 } ) )  ->  ( ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ ,  y  e.  NN  |->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) ) )
3427, 32, 33mp2an 426 . . . 4  |-  ( ( x  e.  CC , 
y  e.  ( CC 
\  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ ,  y  e.  NN  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
3526, 34eqtri 2250 . . 3  |-  (  /  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ , 
y  e.  NN  |->  (
iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
3635fnmpo 6348 . 2  |-  ( A. x  e.  ZZ  A. y  e.  NN  ( iota_ z  e.  CC  ( y  x.  z )  =  x )  e.  CC  ->  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN ) )
3724, 36ax-mp 5 1  |-  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   E!wreu 2510    \ cdif 3194    C_ wss 3197   {csn 3666   class class class wbr 4083    X. cxp 4717    |` cres 4721    Fn wfn 5313   iota_crio 5953  (class class class)co 6001    e. cmpo 6003   CCcc 7997   0cc0 7999    x. cmul 8004   # cap 8728    / cdiv 8819   NNcn 9110   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-z 9447
This theorem is referenced by:  elq  9817  qnnen  13002
  Copyright terms: Public domain W3C validator