ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divfnzn Unicode version

Theorem divfnzn 9695
Description: Division restricted to  ZZ  X.  NN is a function. Given excluded middle, it would be easy to prove this for  CC 
X.  ( CC  \  { 0 } ). The key difference is that an element of  NN is apart from zero, whereas being an element of 
CC  \  { 0 } implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
Assertion
Ref Expression
divfnzn  |-  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )

Proof of Theorem divfnzn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 9331 . . . . . . 7  |-  ( x  e.  ZZ  ->  x  e.  CC )
21ad2antrr 488 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  x  e.  CC )
3 nncn 8998 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
43ad2antlr 489 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  y  e.  CC )
5 simpr 110 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  z  e.  CC )
6 nnap0 9019 . . . . . . 7  |-  ( y  e.  NN  ->  y #  0 )
76ad2antlr 489 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  y #  0 )
82, 4, 5, 7divmulapd 8839 . . . . 5  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  ( ( x  /  y )  =  z  <->  ( y  x.  z )  =  x ) )
98riotabidva 5894 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( x  /  y
)  =  z )  =  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
10 eqcom 2198 . . . . . . 7  |-  ( z  =  ( x  / 
y )  <->  ( x  /  y )  =  z )
1110a1i 9 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( z  =  ( x  /  y )  <-> 
( x  /  y
)  =  z ) )
1211riotabidv 5879 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  =  ( iota_ z  e.  CC  ( x  / 
y )  =  z ) )
13 simpl 109 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  x  e.  CC )
143adantl 277 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  y  e.  CC )
156adantl 277 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  y #  0 )
1613, 14, 15divclapd 8817 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  ( x  /  y
)  e.  CC )
17 reueq 2963 . . . . . . . 8  |-  ( ( x  /  y )  e.  CC  <->  E! z  e.  CC  z  =  ( x  /  y ) )
1816, 17sylib 122 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  E! z  e.  CC  z  =  ( x  /  y ) )
19 riotacl 5892 . . . . . . 7  |-  ( E! z  e.  CC  z  =  ( x  / 
y )  ->  ( iota_ z  e.  CC  z  =  ( x  / 
y ) )  e.  CC )
2018, 19syl 14 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  e.  CC )
211, 20sylan 283 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  e.  CC )
2212, 21eqeltrrd 2274 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( x  /  y
)  =  z )  e.  CC )
239, 22eqeltrrd 2274 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x )  e.  CC )
2423rgen2 2583 . 2  |-  A. x  e.  ZZ  A. y  e.  NN  ( iota_ z  e.  CC  ( y  x.  z )  =  x )  e.  CC
25 df-div 8700 . . . . 5  |-  /  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
2625reseq1i 4942 . . . 4  |-  (  /  |`  ( ZZ  X.  NN ) )  =  ( ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )  |`  ( ZZ  X.  NN ) )
27 zsscn 9334 . . . . 5  |-  ZZ  C_  CC
28 nncn 8998 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  CC )
29 nnne0 9018 . . . . . . 7  |-  ( x  e.  NN  ->  x  =/=  0 )
30 eldifsn 3749 . . . . . . 7  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
3128, 29, 30sylanbrc 417 . . . . . 6  |-  ( x  e.  NN  ->  x  e.  ( CC  \  {
0 } ) )
3231ssriv 3187 . . . . 5  |-  NN  C_  ( CC  \  { 0 } )
33 resmpo 6020 . . . . 5  |-  ( ( ZZ  C_  CC  /\  NN  C_  ( CC  \  {
0 } ) )  ->  ( ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ ,  y  e.  NN  |->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) ) )
3427, 32, 33mp2an 426 . . . 4  |-  ( ( x  e.  CC , 
y  e.  ( CC 
\  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ ,  y  e.  NN  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
3526, 34eqtri 2217 . . 3  |-  (  /  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ , 
y  e.  NN  |->  (
iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
3635fnmpo 6260 . 2  |-  ( A. x  e.  ZZ  A. y  e.  NN  ( iota_ z  e.  CC  ( y  x.  z )  =  x )  e.  CC  ->  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN ) )
3724, 36ax-mp 5 1  |-  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   E!wreu 2477    \ cdif 3154    C_ wss 3157   {csn 3622   class class class wbr 4033    X. cxp 4661    |` cres 4665    Fn wfn 5253   iota_crio 5876  (class class class)co 5922    e. cmpo 5924   CCcc 7877   0cc0 7879    x. cmul 7884   # cap 8608    / cdiv 8699   NNcn 8990   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-z 9327
This theorem is referenced by:  elq  9696  qnnen  12648
  Copyright terms: Public domain W3C validator