ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issrgid Unicode version

Theorem issrgid 13480
Description: Properties showing that an element  I is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgidm.b  |-  B  =  ( Base `  R
)
srgidm.t  |-  .x.  =  ( .r `  R )
srgidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
issrgid  |-  ( R  e. SRing  ->  ( ( I  e.  B  /\  A. x  e.  B  (
( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Distinct variable groups:    x, B    x, I    x, R    x,  .x.    x,  .1.

Proof of Theorem issrgid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
2 eqid 2193 . . 3  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
3 eqid 2193 . . 3  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
4 srgidm.b . . . . . 6  |-  B  =  ( Base `  R
)
5 srgidm.t . . . . . 6  |-  .x.  =  ( .r `  R )
64, 5srgideu 13471 . . . . 5  |-  ( R  e. SRing  ->  E! y  e.  B  A. x  e.  B  ( ( y 
.x.  x )  =  x  /\  ( x 
.x.  y )  =  x ) )
7 reurex 2712 . . . . 5  |-  ( E! y  e.  B  A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  ->  E. y  e.  B  A. x  e.  B  ( ( y  .x.  x )  =  x  /\  ( x  .x.  y )  =  x ) )
86, 7syl 14 . . . 4  |-  ( R  e. SRing  ->  E. y  e.  B  A. x  e.  B  ( ( y  .x.  x )  =  x  /\  ( x  .x.  y )  =  x ) )
9 eqid 2193 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
109, 4mgpbasg 13425 . . . . 5  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
119, 5mgpplusgg 13423 . . . . . . . . 9  |-  ( R  e. SRing  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
1211oveqd 5936 . . . . . . . 8  |-  ( R  e. SRing  ->  ( y  .x.  x )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) )
1312eqeq1d 2202 . . . . . . 7  |-  ( R  e. SRing  ->  ( ( y 
.x.  x )  =  x  <->  ( y ( +g  `  (mulGrp `  R ) ) x )  =  x ) )
1411oveqd 5936 . . . . . . . 8  |-  ( R  e. SRing  ->  ( x  .x.  y )  =  ( x ( +g  `  (mulGrp `  R ) ) y ) )
1514eqeq1d 2202 . . . . . . 7  |-  ( R  e. SRing  ->  ( ( x 
.x.  y )  =  x  <->  ( x ( +g  `  (mulGrp `  R ) ) y )  =  x ) )
1613, 15anbi12d 473 . . . . . 6  |-  ( R  e. SRing  ->  ( ( ( y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x )  <->  ( (
y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) ) )
1710, 16raleqbidv 2706 . . . . 5  |-  ( R  e. SRing  ->  ( A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( y ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) y )  =  x ) ) )
1810, 17rexeqbidv 2707 . . . 4  |-  ( R  e. SRing  ->  ( E. y  e.  B  A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x )  <->  E. y  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) ) )
198, 18mpbid 147 . . 3  |-  ( R  e. SRing  ->  E. y  e.  (
Base `  (mulGrp `  R
) ) A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( y ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) y )  =  x ) )
201, 2, 3, 19ismgmid 12963 . 2  |-  ( R  e. SRing  ->  ( ( I  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) )  <->  ( 0g `  (mulGrp `  R )
)  =  I ) )
2110eleq2d 2263 . . 3  |-  ( R  e. SRing  ->  ( I  e.  B  <->  I  e.  ( Base `  (mulGrp `  R
) ) ) )
2211oveqd 5936 . . . . . 6  |-  ( R  e. SRing  ->  ( I  .x.  x )  =  ( I ( +g  `  (mulGrp `  R ) ) x ) )
2322eqeq1d 2202 . . . . 5  |-  ( R  e. SRing  ->  ( ( I 
.x.  x )  =  x  <->  ( I ( +g  `  (mulGrp `  R ) ) x )  =  x ) )
2411oveqd 5936 . . . . . 6  |-  ( R  e. SRing  ->  ( x  .x.  I )  =  ( x ( +g  `  (mulGrp `  R ) ) I ) )
2524eqeq1d 2202 . . . . 5  |-  ( R  e. SRing  ->  ( ( x 
.x.  I )  =  x  <->  ( x ( +g  `  (mulGrp `  R ) ) I )  =  x ) )
2623, 25anbi12d 473 . . . 4  |-  ( R  e. SRing  ->  ( ( ( I  .x.  x )  =  x  /\  (
x  .x.  I )  =  x )  <->  ( (
I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) ) )
2710, 26raleqbidv 2706 . . 3  |-  ( R  e. SRing  ->  ( A. x  e.  B  ( (
I  .x.  x )  =  x  /\  (
x  .x.  I )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( I ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) I )  =  x ) ) )
2821, 27anbi12d 473 . 2  |-  ( R  e. SRing  ->  ( ( I  e.  B  /\  A. x  e.  B  (
( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
( I  e.  (
Base `  (mulGrp `  R
) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) ) ) )
29 srgidm.u . . . 4  |-  .1.  =  ( 1r `  R )
309, 29ringidvalg 13460 . . 3  |-  ( R  e. SRing  ->  .1.  =  ( 0g `  (mulGrp `  R
) ) )
3130eqeq1d 2202 . 2  |-  ( R  e. SRing  ->  (  .1.  =  I 
<->  ( 0g `  (mulGrp `  R ) )  =  I ) )
3220, 28, 313bitr4d 220 1  |-  ( R  e. SRing  ->  ( ( I  e.  B  /\  A. x  e.  B  (
( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   E!wreu 2474   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   0gc0g 12870  mulGrpcmgp 13419   1rcur 13458  SRingcsrg 13462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mgp 13420  df-ur 13459  df-srg 13463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator