ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issrgid Unicode version

Theorem issrgid 12957
Description: Properties showing that an element  I is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgidm.b  |-  B  =  ( Base `  R
)
srgidm.t  |-  .x.  =  ( .r `  R )
srgidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
issrgid  |-  ( R  e. SRing  ->  ( ( I  e.  B  /\  A. x  e.  B  (
( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Distinct variable groups:    x, B    x, I    x, R    x,  .x.    x,  .1.

Proof of Theorem issrgid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2175 . . 3  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
2 eqid 2175 . . 3  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
3 eqid 2175 . . 3  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
4 srgidm.b . . . . . 6  |-  B  =  ( Base `  R
)
5 srgidm.t . . . . . 6  |-  .x.  =  ( .r `  R )
64, 5srgideu 12948 . . . . 5  |-  ( R  e. SRing  ->  E! y  e.  B  A. x  e.  B  ( ( y 
.x.  x )  =  x  /\  ( x 
.x.  y )  =  x ) )
7 reurex 2688 . . . . 5  |-  ( E! y  e.  B  A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  ->  E. y  e.  B  A. x  e.  B  ( ( y  .x.  x )  =  x  /\  ( x  .x.  y )  =  x ) )
86, 7syl 14 . . . 4  |-  ( R  e. SRing  ->  E. y  e.  B  A. x  e.  B  ( ( y  .x.  x )  =  x  /\  ( x  .x.  y )  =  x ) )
9 eqid 2175 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
109, 4mgpbasg 12930 . . . . 5  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
119, 5mgpplusgg 12929 . . . . . . . . 9  |-  ( R  e. SRing  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
1211oveqd 5882 . . . . . . . 8  |-  ( R  e. SRing  ->  ( y  .x.  x )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) )
1312eqeq1d 2184 . . . . . . 7  |-  ( R  e. SRing  ->  ( ( y 
.x.  x )  =  x  <->  ( y ( +g  `  (mulGrp `  R ) ) x )  =  x ) )
1411oveqd 5882 . . . . . . . 8  |-  ( R  e. SRing  ->  ( x  .x.  y )  =  ( x ( +g  `  (mulGrp `  R ) ) y ) )
1514eqeq1d 2184 . . . . . . 7  |-  ( R  e. SRing  ->  ( ( x 
.x.  y )  =  x  <->  ( x ( +g  `  (mulGrp `  R ) ) y )  =  x ) )
1613, 15anbi12d 473 . . . . . 6  |-  ( R  e. SRing  ->  ( ( ( y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x )  <->  ( (
y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) ) )
1710, 16raleqbidv 2682 . . . . 5  |-  ( R  e. SRing  ->  ( A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( y ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) y )  =  x ) ) )
1810, 17rexeqbidv 2683 . . . 4  |-  ( R  e. SRing  ->  ( E. y  e.  B  A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x )  <->  E. y  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) ) )
198, 18mpbid 147 . . 3  |-  ( R  e. SRing  ->  E. y  e.  (
Base `  (mulGrp `  R
) ) A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( y ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) y )  =  x ) )
201, 2, 3, 19ismgmid 12661 . 2  |-  ( R  e. SRing  ->  ( ( I  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) )  <->  ( 0g `  (mulGrp `  R )
)  =  I ) )
2110eleq2d 2245 . . 3  |-  ( R  e. SRing  ->  ( I  e.  B  <->  I  e.  ( Base `  (mulGrp `  R
) ) ) )
2211oveqd 5882 . . . . . 6  |-  ( R  e. SRing  ->  ( I  .x.  x )  =  ( I ( +g  `  (mulGrp `  R ) ) x ) )
2322eqeq1d 2184 . . . . 5  |-  ( R  e. SRing  ->  ( ( I 
.x.  x )  =  x  <->  ( I ( +g  `  (mulGrp `  R ) ) x )  =  x ) )
2411oveqd 5882 . . . . . 6  |-  ( R  e. SRing  ->  ( x  .x.  I )  =  ( x ( +g  `  (mulGrp `  R ) ) I ) )
2524eqeq1d 2184 . . . . 5  |-  ( R  e. SRing  ->  ( ( x 
.x.  I )  =  x  <->  ( x ( +g  `  (mulGrp `  R ) ) I )  =  x ) )
2623, 25anbi12d 473 . . . 4  |-  ( R  e. SRing  ->  ( ( ( I  .x.  x )  =  x  /\  (
x  .x.  I )  =  x )  <->  ( (
I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) ) )
2710, 26raleqbidv 2682 . . 3  |-  ( R  e. SRing  ->  ( A. x  e.  B  ( (
I  .x.  x )  =  x  /\  (
x  .x.  I )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( I ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) I )  =  x ) ) )
2821, 27anbi12d 473 . 2  |-  ( R  e. SRing  ->  ( ( I  e.  B  /\  A. x  e.  B  (
( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
( I  e.  (
Base `  (mulGrp `  R
) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) ) ) )
29 srgidm.u . . . 4  |-  .1.  =  ( 1r `  R )
309, 29ringidvalg 12937 . . 3  |-  ( R  e. SRing  ->  .1.  =  ( 0g `  (mulGrp `  R
) ) )
3130eqeq1d 2184 . 2  |-  ( R  e. SRing  ->  (  .1.  =  I 
<->  ( 0g `  (mulGrp `  R ) )  =  I ) )
3220, 28, 313bitr4d 220 1  |-  ( R  e. SRing  ->  ( ( I  e.  B  /\  A. x  e.  B  (
( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   E.wrex 2454   E!wreu 2455   ` cfv 5208  (class class class)co 5865   Basecbs 12428   +g cplusg 12492   .rcmulr 12493   0gc0g 12626  mulGrpcmgp 12925   1rcur 12935  SRingcsrg 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-sets 12435  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-mgp 12926  df-ur 12936  df-srg 12940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator