| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isringid | Unicode version | ||
| Description: Properties showing that
an element |
| Ref | Expression |
|---|---|
| rngidm.b |
|
| rngidm.t |
|
| rngidm.u |
|
| Ref | Expression |
|---|---|
| isringid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . 3
| |
| 2 | eqid 2207 |
. . 3
| |
| 3 | eqid 2207 |
. . 3
| |
| 4 | rngidm.b |
. . . . . 6
| |
| 5 | rngidm.t |
. . . . . 6
| |
| 6 | 4, 5 | ringideu 13894 |
. . . . 5
|
| 7 | reurex 2727 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | eqid 2207 |
. . . . . 6
| |
| 10 | 9, 4 | mgpbasg 13803 |
. . . . 5
|
| 11 | 9, 5 | mgpplusgg 13801 |
. . . . . . . . 9
|
| 12 | 11 | oveqd 5984 |
. . . . . . . 8
|
| 13 | 12 | eqeq1d 2216 |
. . . . . . 7
|
| 14 | 11 | oveqd 5984 |
. . . . . . . 8
|
| 15 | 14 | eqeq1d 2216 |
. . . . . . 7
|
| 16 | 13, 15 | anbi12d 473 |
. . . . . 6
|
| 17 | 10, 16 | raleqbidv 2721 |
. . . . 5
|
| 18 | 10, 17 | rexeqbidv 2722 |
. . . 4
|
| 19 | 8, 18 | mpbid 147 |
. . 3
|
| 20 | 1, 2, 3, 19 | ismgmid 13324 |
. 2
|
| 21 | 10 | eleq2d 2277 |
. . 3
|
| 22 | 11 | oveqd 5984 |
. . . . . 6
|
| 23 | 22 | eqeq1d 2216 |
. . . . 5
|
| 24 | 11 | oveqd 5984 |
. . . . . 6
|
| 25 | 24 | eqeq1d 2216 |
. . . . 5
|
| 26 | 23, 25 | anbi12d 473 |
. . . 4
|
| 27 | 10, 26 | raleqbidv 2721 |
. . 3
|
| 28 | 21, 27 | anbi12d 473 |
. 2
|
| 29 | rngidm.u |
. . . 4
| |
| 30 | 9, 29 | ringidvalg 13838 |
. . 3
|
| 31 | 30 | eqeq1d 2216 |
. 2
|
| 32 | 20, 28, 31 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-mgp 13798 df-ur 13837 df-ring 13875 |
| This theorem is referenced by: imasring 13941 subrg1 14108 cnfld1 14449 |
| Copyright terms: Public domain | W3C validator |