ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isringid Unicode version

Theorem isringid 13581
Description: Properties showing that an element  I is the unity element of a ring. (Contributed by NM, 7-Aug-2013.)
Hypotheses
Ref Expression
rngidm.b  |-  B  =  ( Base `  R
)
rngidm.t  |-  .x.  =  ( .r `  R )
rngidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
isringid  |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Distinct variable groups:    x, B    x, I    x, R    x,  .x.    x,  .1.

Proof of Theorem isringid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
2 eqid 2196 . . 3  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
3 eqid 2196 . . 3  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
4 rngidm.b . . . . . 6  |-  B  =  ( Base `  R
)
5 rngidm.t . . . . . 6  |-  .x.  =  ( .r `  R )
64, 5ringideu 13573 . . . . 5  |-  ( R  e.  Ring  ->  E! y  e.  B  A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x ) )
7 reurex 2715 . . . . 5  |-  ( E! y  e.  B  A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  ->  E. y  e.  B  A. x  e.  B  ( ( y  .x.  x )  =  x  /\  ( x  .x.  y )  =  x ) )
86, 7syl 14 . . . 4  |-  ( R  e.  Ring  ->  E. y  e.  B  A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x ) )
9 eqid 2196 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
109, 4mgpbasg 13482 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
119, 5mgpplusgg 13480 . . . . . . . . 9  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1211oveqd 5939 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( y 
.x.  x )  =  ( y ( +g  `  (mulGrp `  R )
) x ) )
1312eqeq1d 2205 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( y  .x.  x )  =  x  <->  ( y
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
1411oveqd 5939 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( x 
.x.  y )  =  ( x ( +g  `  (mulGrp `  R )
) y ) )
1514eqeq1d 2205 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( x  .x.  y )  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) y )  =  x ) )
1613, 15anbi12d 473 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( ( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  <->  ( (
y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) ) )
1710, 16raleqbidv 2709 . . . . 5  |-  ( R  e.  Ring  ->  ( A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( y ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) y )  =  x ) ) )
1810, 17rexeqbidv 2710 . . . 4  |-  ( R  e.  Ring  ->  ( E. y  e.  B  A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  <->  E. y  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) ) )
198, 18mpbid 147 . . 3  |-  ( R  e.  Ring  ->  E. y  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) )
201, 2, 3, 19ismgmid 13020 . 2  |-  ( R  e.  Ring  ->  ( ( I  e.  ( Base `  (mulGrp `  R )
)  /\  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( I ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) I )  =  x ) )  <->  ( 0g `  (mulGrp `  R ) )  =  I ) )
2110eleq2d 2266 . . 3  |-  ( R  e.  Ring  ->  ( I  e.  B  <->  I  e.  ( Base `  (mulGrp `  R
) ) ) )
2211oveqd 5939 . . . . . 6  |-  ( R  e.  Ring  ->  ( I 
.x.  x )  =  ( I ( +g  `  (mulGrp `  R )
) x ) )
2322eqeq1d 2205 . . . . 5  |-  ( R  e.  Ring  ->  ( ( I  .x.  x )  =  x  <->  ( I
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
2411oveqd 5939 . . . . . 6  |-  ( R  e.  Ring  ->  ( x 
.x.  I )  =  ( x ( +g  `  (mulGrp `  R )
) I ) )
2524eqeq1d 2205 . . . . 5  |-  ( R  e.  Ring  ->  ( ( x  .x.  I )  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) I )  =  x ) )
2623, 25anbi12d 473 . . . 4  |-  ( R  e.  Ring  ->  ( ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x )  <->  ( (
I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) ) )
2710, 26raleqbidv 2709 . . 3  |-  ( R  e.  Ring  ->  ( A. x  e.  B  (
( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( I ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) I )  =  x ) ) )
2821, 27anbi12d 473 . 2  |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
( I  e.  (
Base `  (mulGrp `  R
) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) ) ) )
29 rngidm.u . . . 4  |-  .1.  =  ( 1r `  R )
309, 29ringidvalg 13517 . . 3  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
3130eqeq1d 2205 . 2  |-  ( R  e.  Ring  ->  (  .1.  =  I  <->  ( 0g `  (mulGrp `  R )
)  =  I ) )
3220, 28, 313bitr4d 220 1  |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   E!wreu 2477   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   .rcmulr 12756   0gc0g 12927  mulGrpcmgp 13476   1rcur 13515   Ringcrg 13552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mgp 13477  df-ur 13516  df-ring 13554
This theorem is referenced by:  imasring  13620  subrg1  13787  cnfld1  14128
  Copyright terms: Public domain W3C validator