ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isringid Unicode version

Theorem isringid 13208
Description: Properties showing that an element  I is the unity element of a ring. (Contributed by NM, 7-Aug-2013.)
Hypotheses
Ref Expression
rngidm.b  |-  B  =  ( Base `  R
)
rngidm.t  |-  .x.  =  ( .r `  R )
rngidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
isringid  |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Distinct variable groups:    x, B    x, I    x, R    x,  .x.    x,  .1.

Proof of Theorem isringid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . 3  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
2 eqid 2177 . . 3  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
3 eqid 2177 . . 3  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
4 rngidm.b . . . . . 6  |-  B  =  ( Base `  R
)
5 rngidm.t . . . . . 6  |-  .x.  =  ( .r `  R )
64, 5ringideu 13200 . . . . 5  |-  ( R  e.  Ring  ->  E! y  e.  B  A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x ) )
7 reurex 2691 . . . . 5  |-  ( E! y  e.  B  A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  ->  E. y  e.  B  A. x  e.  B  ( ( y  .x.  x )  =  x  /\  ( x  .x.  y )  =  x ) )
86, 7syl 14 . . . 4  |-  ( R  e.  Ring  ->  E. y  e.  B  A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x ) )
9 eqid 2177 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
109, 4mgpbasg 13136 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
119, 5mgpplusgg 13134 . . . . . . . . 9  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1211oveqd 5892 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( y 
.x.  x )  =  ( y ( +g  `  (mulGrp `  R )
) x ) )
1312eqeq1d 2186 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( y  .x.  x )  =  x  <->  ( y
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
1411oveqd 5892 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( x 
.x.  y )  =  ( x ( +g  `  (mulGrp `  R )
) y ) )
1514eqeq1d 2186 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( x  .x.  y )  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) y )  =  x ) )
1613, 15anbi12d 473 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( ( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  <->  ( (
y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) ) )
1710, 16raleqbidv 2685 . . . . 5  |-  ( R  e.  Ring  ->  ( A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( y ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) y )  =  x ) ) )
1810, 17rexeqbidv 2686 . . . 4  |-  ( R  e.  Ring  ->  ( E. y  e.  B  A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  <->  E. y  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) ) )
198, 18mpbid 147 . . 3  |-  ( R  e.  Ring  ->  E. y  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) )
201, 2, 3, 19ismgmid 12796 . 2  |-  ( R  e.  Ring  ->  ( ( I  e.  ( Base `  (mulGrp `  R )
)  /\  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( I ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) I )  =  x ) )  <->  ( 0g `  (mulGrp `  R ) )  =  I ) )
2110eleq2d 2247 . . 3  |-  ( R  e.  Ring  ->  ( I  e.  B  <->  I  e.  ( Base `  (mulGrp `  R
) ) ) )
2211oveqd 5892 . . . . . 6  |-  ( R  e.  Ring  ->  ( I 
.x.  x )  =  ( I ( +g  `  (mulGrp `  R )
) x ) )
2322eqeq1d 2186 . . . . 5  |-  ( R  e.  Ring  ->  ( ( I  .x.  x )  =  x  <->  ( I
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
2411oveqd 5892 . . . . . 6  |-  ( R  e.  Ring  ->  ( x 
.x.  I )  =  ( x ( +g  `  (mulGrp `  R )
) I ) )
2524eqeq1d 2186 . . . . 5  |-  ( R  e.  Ring  ->  ( ( x  .x.  I )  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) I )  =  x ) )
2623, 25anbi12d 473 . . . 4  |-  ( R  e.  Ring  ->  ( ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x )  <->  ( (
I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) ) )
2710, 26raleqbidv 2685 . . 3  |-  ( R  e.  Ring  ->  ( A. x  e.  B  (
( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( I ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) I )  =  x ) ) )
2821, 27anbi12d 473 . 2  |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
( I  e.  (
Base `  (mulGrp `  R
) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) ) ) )
29 rngidm.u . . . 4  |-  .1.  =  ( 1r `  R )
309, 29ringidvalg 13144 . . 3  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
3130eqeq1d 2186 . 2  |-  ( R  e.  Ring  ->  (  .1.  =  I  <->  ( 0g `  (mulGrp `  R )
)  =  I ) )
3220, 28, 313bitr4d 220 1  |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   E!wreu 2457   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536   .rcmulr 12537   0gc0g 12705  mulGrpcmgp 13130   1rcur 13142   Ringcrg 13179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-plusg 12549  df-mulr 12550  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-mgp 13131  df-ur 13143  df-ring 13181
This theorem is referenced by:  subrg1  13352  cnfld1  13469
  Copyright terms: Public domain W3C validator