ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isringid Unicode version

Theorem isringid 13902
Description: Properties showing that an element  I is the unity element of a ring. (Contributed by NM, 7-Aug-2013.)
Hypotheses
Ref Expression
rngidm.b  |-  B  =  ( Base `  R
)
rngidm.t  |-  .x.  =  ( .r `  R )
rngidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
isringid  |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Distinct variable groups:    x, B    x, I    x, R    x,  .x.    x,  .1.

Proof of Theorem isringid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . 3  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
2 eqid 2207 . . 3  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
3 eqid 2207 . . 3  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
4 rngidm.b . . . . . 6  |-  B  =  ( Base `  R
)
5 rngidm.t . . . . . 6  |-  .x.  =  ( .r `  R )
64, 5ringideu 13894 . . . . 5  |-  ( R  e.  Ring  ->  E! y  e.  B  A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x ) )
7 reurex 2727 . . . . 5  |-  ( E! y  e.  B  A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  ->  E. y  e.  B  A. x  e.  B  ( ( y  .x.  x )  =  x  /\  ( x  .x.  y )  =  x ) )
86, 7syl 14 . . . 4  |-  ( R  e.  Ring  ->  E. y  e.  B  A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x ) )
9 eqid 2207 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
109, 4mgpbasg 13803 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
119, 5mgpplusgg 13801 . . . . . . . . 9  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1211oveqd 5984 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( y 
.x.  x )  =  ( y ( +g  `  (mulGrp `  R )
) x ) )
1312eqeq1d 2216 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( y  .x.  x )  =  x  <->  ( y
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
1411oveqd 5984 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( x 
.x.  y )  =  ( x ( +g  `  (mulGrp `  R )
) y ) )
1514eqeq1d 2216 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( x  .x.  y )  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) y )  =  x ) )
1613, 15anbi12d 473 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( ( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  <->  ( (
y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) ) )
1710, 16raleqbidv 2721 . . . . 5  |-  ( R  e.  Ring  ->  ( A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( y ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) y )  =  x ) ) )
1810, 17rexeqbidv 2722 . . . 4  |-  ( R  e.  Ring  ->  ( E. y  e.  B  A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  <->  E. y  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) ) )
198, 18mpbid 147 . . 3  |-  ( R  e.  Ring  ->  E. y  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( y ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) y )  =  x ) )
201, 2, 3, 19ismgmid 13324 . 2  |-  ( R  e.  Ring  ->  ( ( I  e.  ( Base `  (mulGrp `  R )
)  /\  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( I ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) I )  =  x ) )  <->  ( 0g `  (mulGrp `  R ) )  =  I ) )
2110eleq2d 2277 . . 3  |-  ( R  e.  Ring  ->  ( I  e.  B  <->  I  e.  ( Base `  (mulGrp `  R
) ) ) )
2211oveqd 5984 . . . . . 6  |-  ( R  e.  Ring  ->  ( I 
.x.  x )  =  ( I ( +g  `  (mulGrp `  R )
) x ) )
2322eqeq1d 2216 . . . . 5  |-  ( R  e.  Ring  ->  ( ( I  .x.  x )  =  x  <->  ( I
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
2411oveqd 5984 . . . . . 6  |-  ( R  e.  Ring  ->  ( x 
.x.  I )  =  ( x ( +g  `  (mulGrp `  R )
) I ) )
2524eqeq1d 2216 . . . . 5  |-  ( R  e.  Ring  ->  ( ( x  .x.  I )  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) I )  =  x ) )
2623, 25anbi12d 473 . . . 4  |-  ( R  e.  Ring  ->  ( ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x )  <->  ( (
I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) ) )
2710, 26raleqbidv 2721 . . 3  |-  ( R  e.  Ring  ->  ( A. x  e.  B  (
( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( I ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) I )  =  x ) ) )
2821, 27anbi12d 473 . 2  |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
( I  e.  (
Base `  (mulGrp `  R
) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( I ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) I )  =  x ) ) ) )
29 rngidm.u . . . 4  |-  .1.  =  ( 1r `  R )
309, 29ringidvalg 13838 . . 3  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
3130eqeq1d 2216 . 2  |-  ( R  e.  Ring  ->  (  .1.  =  I  <->  ( 0g `  (mulGrp `  R )
)  =  I ) )
3220, 28, 313bitr4d 220 1  |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   E!wreu 2488   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   .rcmulr 13025   0gc0g 13203  mulGrpcmgp 13797   1rcur 13836   Ringcrg 13873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-mgp 13798  df-ur 13837  df-ring 13875
This theorem is referenced by:  imasring  13941  subrg1  14108  cnfld1  14449
  Copyright terms: Public domain W3C validator