ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrriota Unicode version

Theorem prsrriota 7812
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrriota  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
Distinct variable group:    x, A

Proof of Theorem prsrriota
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 srpospr 7807 . . 3  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
2 reurex 2704 . . 3  |-  ( E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A  ->  E. y  e.  P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  A )
31, 2syl 14 . 2  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E. y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
4 simprr 531 . . . . 5  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
5 simprl 529 . . . . . 6  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  y  e.  P. )
6 srpospr 7807 . . . . . . 7  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
76adantr 276 . . . . . 6  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  E! x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
8 oveq1 5899 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  +P.  1P )  =  ( y  +P. 
1P ) )
98opeq1d 3799 . . . . . . . . 9  |-  ( x  =  y  ->  <. (
x  +P.  1P ) ,  1P >.  =  <. ( y  +P.  1P ) ,  1P >. )
109eceq1d 6590 . . . . . . . 8  |-  ( x  =  y  ->  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1110eqeq1d 2198 . . . . . . 7  |-  ( x  =  y  ->  ( [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A  <->  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
1211riota2 5870 . . . . . 6  |-  ( ( y  e.  P.  /\  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  ->  ( [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A  <-> 
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y ) )
135, 7, 12syl2anc 411 . . . . 5  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  ( [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A  <-> 
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y ) )
144, 13mpbid 147 . . . 4  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y )
15 oveq1 5899 . . . . . 6  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P )  =  ( y  +P.  1P ) )
1615opeq1d 3799 . . . . 5  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >.  =  <. ( y  +P.  1P ) ,  1P >. )
1716eceq1d 6590 . . . 4  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  [ <. (
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1814, 17syl 14 . . 3  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( ( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1918, 4eqtrd 2222 . 2  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( ( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
203, 19rexlimddv 2612 1  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   E.wrex 2469   E!wreu 2470   <.cop 3610   class class class wbr 4018   iota_crio 5847  (class class class)co 5892   [cec 6552   P.cnp 7315   1Pc1p 7316    +P. cpp 7317    ~R cer 7320   R.cnr 7321   0Rc0r 7322    <R cltr 7327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4304  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-irdg 6390  df-1o 6436  df-2o 6437  df-oadd 6440  df-omul 6441  df-er 6554  df-ec 6556  df-qs 6560  df-ni 7328  df-pli 7329  df-mi 7330  df-lti 7331  df-plpq 7368  df-mpq 7369  df-enq 7371  df-nqqs 7372  df-plqqs 7373  df-mqqs 7374  df-1nqqs 7375  df-rq 7376  df-ltnqqs 7377  df-enq0 7448  df-nq0 7449  df-0nq0 7450  df-plq0 7451  df-mq0 7452  df-inp 7490  df-i1p 7491  df-iplp 7492  df-iltp 7494  df-enr 7750  df-nr 7751  df-ltr 7754  df-0r 7755
This theorem is referenced by:  caucvgsrlemfv  7815  caucvgsrlemgt1  7819
  Copyright terms: Public domain W3C validator