ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrriota Unicode version

Theorem prsrriota 7872
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrriota  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
Distinct variable group:    x, A

Proof of Theorem prsrriota
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 srpospr 7867 . . 3  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
2 reurex 2715 . . 3  |-  ( E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A  ->  E. y  e.  P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  A )
31, 2syl 14 . 2  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E. y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
4 simprr 531 . . . . 5  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
5 simprl 529 . . . . . 6  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  y  e.  P. )
6 srpospr 7867 . . . . . . 7  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
76adantr 276 . . . . . 6  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  E! x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
8 oveq1 5932 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  +P.  1P )  =  ( y  +P. 
1P ) )
98opeq1d 3815 . . . . . . . . 9  |-  ( x  =  y  ->  <. (
x  +P.  1P ) ,  1P >.  =  <. ( y  +P.  1P ) ,  1P >. )
109eceq1d 6637 . . . . . . . 8  |-  ( x  =  y  ->  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1110eqeq1d 2205 . . . . . . 7  |-  ( x  =  y  ->  ( [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A  <->  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
1211riota2 5903 . . . . . 6  |-  ( ( y  e.  P.  /\  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  ->  ( [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A  <-> 
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y ) )
135, 7, 12syl2anc 411 . . . . 5  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  ( [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A  <-> 
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y ) )
144, 13mpbid 147 . . . 4  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y )
15 oveq1 5932 . . . . . 6  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P )  =  ( y  +P.  1P ) )
1615opeq1d 3815 . . . . 5  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >.  =  <. ( y  +P.  1P ) ,  1P >. )
1716eceq1d 6637 . . . 4  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  [ <. (
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1814, 17syl 14 . . 3  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( ( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1918, 4eqtrd 2229 . 2  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( ( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
203, 19rexlimddv 2619 1  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   E!wreu 2477   <.cop 3626   class class class wbr 4034   iota_crio 5879  (class class class)co 5925   [cec 6599   P.cnp 7375   1Pc1p 7376    +P. cpp 7377    ~R cer 7380   R.cnr 7381   0Rc0r 7382    <R cltr 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-iltp 7554  df-enr 7810  df-nr 7811  df-ltr 7814  df-0r 7815
This theorem is referenced by:  caucvgsrlemfv  7875  caucvgsrlemgt1  7879
  Copyright terms: Public domain W3C validator