ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrriota Unicode version

Theorem prsrriota 7975
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrriota  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
Distinct variable group:    x, A

Proof of Theorem prsrriota
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 srpospr 7970 . . 3  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
2 reurex 2750 . . 3  |-  ( E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A  ->  E. y  e.  P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  A )
31, 2syl 14 . 2  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E. y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
4 simprr 531 . . . . 5  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
5 simprl 529 . . . . . 6  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  y  e.  P. )
6 srpospr 7970 . . . . . . 7  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
76adantr 276 . . . . . 6  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  E! x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
8 oveq1 6008 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  +P.  1P )  =  ( y  +P. 
1P ) )
98opeq1d 3863 . . . . . . . . 9  |-  ( x  =  y  ->  <. (
x  +P.  1P ) ,  1P >.  =  <. ( y  +P.  1P ) ,  1P >. )
109eceq1d 6716 . . . . . . . 8  |-  ( x  =  y  ->  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1110eqeq1d 2238 . . . . . . 7  |-  ( x  =  y  ->  ( [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A  <->  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
1211riota2 5978 . . . . . 6  |-  ( ( y  e.  P.  /\  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  ->  ( [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A  <-> 
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y ) )
135, 7, 12syl2anc 411 . . . . 5  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  ( [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A  <-> 
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y ) )
144, 13mpbid 147 . . . 4  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y )
15 oveq1 6008 . . . . . 6  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P )  =  ( y  +P.  1P ) )
1615opeq1d 3863 . . . . 5  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >.  =  <. ( y  +P.  1P ) ,  1P >. )
1716eceq1d 6716 . . . 4  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  [ <. (
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1814, 17syl 14 . . 3  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( ( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1918, 4eqtrd 2262 . 2  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( ( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
203, 19rexlimddv 2653 1  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   E!wreu 2510   <.cop 3669   class class class wbr 4083   iota_crio 5953  (class class class)co 6001   [cec 6678   P.cnp 7478   1Pc1p 7479    +P. cpp 7480    ~R cer 7483   R.cnr 7484   0Rc0r 7485    <R cltr 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-i1p 7654  df-iplp 7655  df-iltp 7657  df-enr 7913  df-nr 7914  df-ltr 7917  df-0r 7918
This theorem is referenced by:  caucvgsrlemfv  7978  caucvgsrlemgt1  7982
  Copyright terms: Public domain W3C validator