ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinc Unicode version

Theorem ivthinc 14057
Description: The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
Assertion
Ref Expression
ivthinc  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Distinct variable groups:    A, c, x   
y, A, x    B, c, x    y, B    F, c, x    y, F    U, c, x    y, U    ph, c, x    ph, y
Allowed substitution hints:    D( x, y, c)

Proof of Theorem ivthinc
Dummy variables  p  r  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . . 4  |-  ( ph  ->  A  e.  RR )
2 ivth.2 . . . 4  |-  ( ph  ->  B  e.  RR )
3 ivth.3 . . . 4  |-  ( ph  ->  U  e.  RR )
4 ivth.4 . . . 4  |-  ( ph  ->  A  <  B )
5 ivth.5 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  D )
6 ivth.7 . . . 4  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
7 ivth.8 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
8 ivth.9 . . . 4  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
9 ivthinc.i . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
10 eqid 2177 . . . 4  |-  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U }  =  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
11 eqid 2177 . . . 4  |-  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) }  =  {
w  e.  ( A [,] B )  |  U  <  ( F `
 w ) }
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ivthinclemex 14056 . . 3  |-  ( ph  ->  E! c  e.  ( A (,) B ) ( A. p  e. 
{ w  e.  ( A [,] B )  |  ( F `  w )  <  U } p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )
13 reurex 2690 . . 3  |-  ( E! c  e.  ( A (,) B ) ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r )  ->  E. c  e.  ( A (,) B
) ( A. p  e.  { w  e.  ( A [,] B )  |  ( F `  w )  <  U } p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )
1412, 13syl 14 . 2  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( A. p  e. 
{ w  e.  ( A [,] B )  |  ( F `  w )  <  U } p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )
15 elioore 9911 . . . . . . . . . 10  |-  ( c  e.  ( A (,) B )  ->  c  e.  RR )
1615ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  c  e.  RR )
1716ltnrd 8068 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  -.  c  <  c )
18 breq1 4006 . . . . . . . . 9  |-  ( p  =  c  ->  (
p  <  c  <->  c  <  c ) )
19 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  ( F `  c )  <  U )  ->  A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c )
20 fveq2 5515 . . . . . . . . . . 11  |-  ( w  =  c  ->  ( F `  w )  =  ( F `  c ) )
2120breq1d 4013 . . . . . . . . . 10  |-  ( w  =  c  ->  (
( F `  w
)  <  U  <->  ( F `  c )  <  U
) )
22 ioossicc 9958 . . . . . . . . . . . . 13  |-  ( A (,) B )  C_  ( A [,] B )
2322sseli 3151 . . . . . . . . . . . 12  |-  ( c  e.  ( A (,) B )  ->  c  e.  ( A [,] B
) )
2423adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  ( A [,] B ) )
2524ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  ( F `  c )  <  U )  -> 
c  e.  ( A [,] B ) )
26 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  ( F `  c )  <  U )  -> 
( F `  c
)  <  U )
2721, 25, 26elrabd 2895 . . . . . . . . 9  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  ( F `  c )  <  U )  -> 
c  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } )
2818, 19, 27rspcdva 2846 . . . . . . . 8  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  ( F `  c )  <  U )  -> 
c  <  c )
2917, 28mtand 665 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  -.  ( F `  c )  <  U )
30 breq2 4007 . . . . . . . . 9  |-  ( r  =  c  ->  (
c  <  r  <->  c  <  c ) )
31 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  U  <  ( F `  c ) )  ->  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r )
3220breq2d 4015 . . . . . . . . . 10  |-  ( w  =  c  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  c ) ) )
3324ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  U  <  ( F `  c ) )  -> 
c  e.  ( A [,] B ) )
34 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  U  <  ( F `  c ) )  ->  U  <  ( F `  c ) )
3532, 33, 34elrabd 2895 . . . . . . . . 9  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  U  <  ( F `  c ) )  -> 
c  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } )
3630, 31, 35rspcdva 2846 . . . . . . . 8  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  U  <  ( F `  c ) )  -> 
c  <  c )
3717, 36mtand 665 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  -.  U  <  ( F `  c ) )
38 ioran 752 . . . . . . 7  |-  ( -.  ( ( F `  c )  <  U  \/  U  <  ( F `
 c ) )  <-> 
( -.  ( F `
 c )  < 
U  /\  -.  U  <  ( F `  c
) ) )
3929, 37, 38sylanbrc 417 . . . . . 6  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  -.  ( ( F `  c )  <  U  \/  U  <  ( F `
 c ) ) )
40 fveq2 5515 . . . . . . . . . 10  |-  ( x  =  c  ->  ( F `  x )  =  ( F `  c ) )
4140eleq1d 2246 . . . . . . . . 9  |-  ( x  =  c  ->  (
( F `  x
)  e.  RR  <->  ( F `  c )  e.  RR ) )
427ralrimiva 2550 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
4342adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  A. x  e.  ( A [,] B
) ( F `  x )  e.  RR )
4441, 43, 24rspcdva 2846 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  RR )
453adantr 276 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  U  e.  RR )
46 reaplt 8544 . . . . . . . 8  |-  ( ( ( F `  c
)  e.  RR  /\  U  e.  RR )  ->  ( ( F `  c ) #  U  <->  ( ( F `  c )  <  U  \/  U  < 
( F `  c
) ) ) )
4744, 45, 46syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( F `  c ) #  U 
<->  ( ( F `  c )  <  U  \/  U  <  ( F `
 c ) ) ) )
4847adantr 276 . . . . . 6  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  (
( F `  c
) #  U  <->  ( ( F `  c )  <  U  \/  U  < 
( F `  c
) ) ) )
4939, 48mtbird 673 . . . . 5  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  -.  ( F `  c ) #  U )
5044recnd 7985 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  CC )
5150adantr 276 . . . . . 6  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  ( F `  c )  e.  CC )
523recnd 7985 . . . . . . 7  |-  ( ph  ->  U  e.  CC )
5352ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  U  e.  CC )
54 apti 8578 . . . . . 6  |-  ( ( ( F `  c
)  e.  CC  /\  U  e.  CC )  ->  ( ( F `  c )  =  U  <->  -.  ( F `  c
) #  U ) )
5551, 53, 54syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  (
( F `  c
)  =  U  <->  -.  ( F `  c ) #  U ) )
5649, 55mpbird 167 . . . 4  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  ( F `  c )  =  U )
5756ex 115 . . 3  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
)  ->  ( F `  c )  =  U ) )
5857reximdva 2579 . 2  |-  ( ph  ->  ( E. c  e.  ( A (,) B
) ( A. p  e.  { w  e.  ( A [,] B )  |  ( F `  w )  <  U } p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r )  ->  E. c  e.  ( A (,) B
) ( F `  c )  =  U ) )
5914, 58mpd 13 1  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   E!wreu 2457   {crab 2459    C_ wss 3129   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   CCcc 7808   RRcr 7809    < clt 7991   # cap 8537   (,)cioo 9887   [,]cicc 9890   -cn->ccncf 13993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930  ax-pre-suploc 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-map 6649  df-sup 6982  df-inf 6983  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-rp 9653  df-ioo 9891  df-icc 9894  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-cncf 13994
This theorem is referenced by:  ivthdec  14058  reeff1olem  14128
  Copyright terms: Public domain W3C validator