ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinc Unicode version

Theorem ivthinc 15311
Description: The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
Assertion
Ref Expression
ivthinc  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Distinct variable groups:    A, c, x   
y, A, x    B, c, x    y, B    F, c, x    y, F    U, c, x    y, U    ph, c, x    ph, y
Allowed substitution hints:    D( x, y, c)

Proof of Theorem ivthinc
Dummy variables  p  r  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . . 4  |-  ( ph  ->  A  e.  RR )
2 ivth.2 . . . 4  |-  ( ph  ->  B  e.  RR )
3 ivth.3 . . . 4  |-  ( ph  ->  U  e.  RR )
4 ivth.4 . . . 4  |-  ( ph  ->  A  <  B )
5 ivth.5 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  D )
6 ivth.7 . . . 4  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
7 ivth.8 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
8 ivth.9 . . . 4  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
9 ivthinc.i . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
10 eqid 2229 . . . 4  |-  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U }  =  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
11 eqid 2229 . . . 4  |-  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) }  =  {
w  e.  ( A [,] B )  |  U  <  ( F `
 w ) }
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ivthinclemex 15310 . . 3  |-  ( ph  ->  E! c  e.  ( A (,) B ) ( A. p  e. 
{ w  e.  ( A [,] B )  |  ( F `  w )  <  U } p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )
13 reurex 2750 . . 3  |-  ( E! c  e.  ( A (,) B ) ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r )  ->  E. c  e.  ( A (,) B
) ( A. p  e.  { w  e.  ( A [,] B )  |  ( F `  w )  <  U } p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )
1412, 13syl 14 . 2  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( A. p  e. 
{ w  e.  ( A [,] B )  |  ( F `  w )  <  U } p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )
15 elioore 10104 . . . . . . . . . 10  |-  ( c  e.  ( A (,) B )  ->  c  e.  RR )
1615ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  c  e.  RR )
1716ltnrd 8254 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  -.  c  <  c )
18 breq1 4085 . . . . . . . . 9  |-  ( p  =  c  ->  (
p  <  c  <->  c  <  c ) )
19 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  ( F `  c )  <  U )  ->  A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c )
20 fveq2 5626 . . . . . . . . . . 11  |-  ( w  =  c  ->  ( F `  w )  =  ( F `  c ) )
2120breq1d 4092 . . . . . . . . . 10  |-  ( w  =  c  ->  (
( F `  w
)  <  U  <->  ( F `  c )  <  U
) )
22 ioossicc 10151 . . . . . . . . . . . . 13  |-  ( A (,) B )  C_  ( A [,] B )
2322sseli 3220 . . . . . . . . . . . 12  |-  ( c  e.  ( A (,) B )  ->  c  e.  ( A [,] B
) )
2423adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  ( A [,] B ) )
2524ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  ( F `  c )  <  U )  -> 
c  e.  ( A [,] B ) )
26 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  ( F `  c )  <  U )  -> 
( F `  c
)  <  U )
2721, 25, 26elrabd 2961 . . . . . . . . 9  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  ( F `  c )  <  U )  -> 
c  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } )
2818, 19, 27rspcdva 2912 . . . . . . . 8  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  ( F `  c )  <  U )  -> 
c  <  c )
2917, 28mtand 669 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  -.  ( F `  c )  <  U )
30 breq2 4086 . . . . . . . . 9  |-  ( r  =  c  ->  (
c  <  r  <->  c  <  c ) )
31 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  U  <  ( F `  c ) )  ->  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r )
3220breq2d 4094 . . . . . . . . . 10  |-  ( w  =  c  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  c ) ) )
3324ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  U  <  ( F `  c ) )  -> 
c  e.  ( A [,] B ) )
34 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  U  <  ( F `  c ) )  ->  U  <  ( F `  c ) )
3532, 33, 34elrabd 2961 . . . . . . . . 9  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  U  <  ( F `  c ) )  -> 
c  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } )
3630, 31, 35rspcdva 2912 . . . . . . . 8  |-  ( ( ( ( ph  /\  c  e.  ( A (,) B ) )  /\  ( A. p  e.  {
w  e.  ( A [,] B )  |  ( F `  w
)  <  U }
p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r ) )  /\  U  <  ( F `  c ) )  -> 
c  <  c )
3717, 36mtand 669 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  -.  U  <  ( F `  c ) )
38 ioran 757 . . . . . . 7  |-  ( -.  ( ( F `  c )  <  U  \/  U  <  ( F `
 c ) )  <-> 
( -.  ( F `
 c )  < 
U  /\  -.  U  <  ( F `  c
) ) )
3929, 37, 38sylanbrc 417 . . . . . 6  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  -.  ( ( F `  c )  <  U  \/  U  <  ( F `
 c ) ) )
40 fveq2 5626 . . . . . . . . . 10  |-  ( x  =  c  ->  ( F `  x )  =  ( F `  c ) )
4140eleq1d 2298 . . . . . . . . 9  |-  ( x  =  c  ->  (
( F `  x
)  e.  RR  <->  ( F `  c )  e.  RR ) )
427ralrimiva 2603 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
4342adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  A. x  e.  ( A [,] B
) ( F `  x )  e.  RR )
4441, 43, 24rspcdva 2912 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  RR )
453adantr 276 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  U  e.  RR )
46 reaplt 8731 . . . . . . . 8  |-  ( ( ( F `  c
)  e.  RR  /\  U  e.  RR )  ->  ( ( F `  c ) #  U  <->  ( ( F `  c )  <  U  \/  U  < 
( F `  c
) ) ) )
4744, 45, 46syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( F `  c ) #  U 
<->  ( ( F `  c )  <  U  \/  U  <  ( F `
 c ) ) ) )
4847adantr 276 . . . . . 6  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  (
( F `  c
) #  U  <->  ( ( F `  c )  <  U  \/  U  < 
( F `  c
) ) ) )
4939, 48mtbird 677 . . . . 5  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  -.  ( F `  c ) #  U )
5044recnd 8171 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  CC )
5150adantr 276 . . . . . 6  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  ( F `  c )  e.  CC )
523recnd 8171 . . . . . . 7  |-  ( ph  ->  U  e.  CC )
5352ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  U  e.  CC )
54 apti 8765 . . . . . 6  |-  ( ( ( F `  c
)  e.  CC  /\  U  e.  CC )  ->  ( ( F `  c )  =  U  <->  -.  ( F `  c
) #  U ) )
5551, 53, 54syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  (
( F `  c
)  =  U  <->  -.  ( F `  c ) #  U ) )
5649, 55mpbird 167 . . . 4  |-  ( ( ( ph  /\  c  e.  ( A (,) B
) )  /\  ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
) )  ->  ( F `  c )  =  U )
5756ex 115 . . 3  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( ( A. p  e.  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U } p  < 
c  /\  A. r  e.  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) } c  <  r
)  ->  ( F `  c )  =  U ) )
5857reximdva 2632 . 2  |-  ( ph  ->  ( E. c  e.  ( A (,) B
) ( A. p  e.  { w  e.  ( A [,] B )  |  ( F `  w )  <  U } p  <  c  /\  A. r  e.  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) } c  < 
r )  ->  E. c  e.  ( A (,) B
) ( F `  c )  =  U ) )
5914, 58mpd 13 1  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   E!wreu 2510   {crab 2512    C_ wss 3197   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994    < clt 8177   # cap 8724   (,)cioo 10080   [,]cicc 10083   -cn->ccncf 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-pre-suploc 8116
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-map 6795  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-ioo 10084  df-icc 10087  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-cncf 15239
This theorem is referenced by:  ivthdec  15312  reeff1olem  15439
  Copyright terms: Public domain W3C validator