ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modprm0 Unicode version

Theorem modprm0 12208
Description: For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.)
Assertion
Ref Expression
modprm0  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Distinct variable groups:    j, I    j, N    P, j

Proof of Theorem modprm0
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 reumodprminv 12207 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E! r  e.  ( 1 ... ( P  -  1 ) ) ( ( N  x.  r )  mod 
P )  =  1 )
2 reurex 2683 . . . 4  |-  ( E! r  e.  ( 1 ... ( P  - 
1 ) ) ( ( N  x.  r
)  mod  P )  =  1  ->  E. r  e.  ( 1 ... ( P  -  1 ) ) ( ( N  x.  r )  mod 
P )  =  1 )
3 prmz 12065 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ZZ )
433ad2ant1 1013 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  ZZ )
54adantl 275 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  ZZ )
6 elfzelz 9981 . . . . . . . . . . 11  |-  ( r  e.  ( 1 ... ( P  -  1 ) )  ->  r  e.  ZZ )
76adantr 274 . . . . . . . . . 10  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  r  e.  ZZ )
8 elfzoelz 10103 . . . . . . . . . . 11  |-  ( I  e.  ( 1..^ P )  ->  I  e.  ZZ )
983ad2ant3 1015 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  I  e.  ZZ )
10 zmulcl 9265 . . . . . . . . . 10  |-  ( ( r  e.  ZZ  /\  I  e.  ZZ )  ->  ( r  x.  I
)  e.  ZZ )
117, 9, 10syl2an 287 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  I )  e.  ZZ )
125, 11zsubcld 9339 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( P  -  ( r  x.  I ) )  e.  ZZ )
13 prmnn 12064 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
14133ad2ant1 1013 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  NN )
1514adantl 275 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  NN )
16 zmodfzo 10303 . . . . . . . 8  |-  ( ( ( P  -  (
r  x.  I ) )  e.  ZZ  /\  P  e.  NN )  ->  ( ( P  -  ( r  x.  I
) )  mod  P
)  e.  ( 0..^ P ) )
1712, 15, 16syl2anc 409 . . . . . . 7  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  -  ( r  x.  I ) )  mod 
P )  e.  ( 0..^ P ) )
189adantl 275 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  e.  ZZ )
19 zq 9585 . . . . . . . . . 10  |-  ( I  e.  ZZ  ->  I  e.  QQ )
2018, 19syl 14 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  e.  QQ )
21 zq 9585 . . . . . . . . . 10  |-  ( ( P  -  ( r  x.  I ) )  e.  ZZ  ->  ( P  -  ( r  x.  I ) )  e.  QQ )
2212, 21syl 14 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( P  -  ( r  x.  I ) )  e.  QQ )
23 elfzoelz 10103 . . . . . . . . . . 11  |-  ( N  e.  ( 1..^ P )  ->  N  e.  ZZ )
24233ad2ant2 1014 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  N  e.  ZZ )
2524adantl 275 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  N  e.  ZZ )
26 zq 9585 . . . . . . . . . 10  |-  ( P  e.  ZZ  ->  P  e.  QQ )
275, 26syl 14 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  QQ )
2815nngt0d 8922 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  0  <  P )
29 modqaddmulmod 10347 . . . . . . . . 9  |-  ( ( ( I  e.  QQ  /\  ( P  -  (
r  x.  I ) )  e.  QQ  /\  N  e.  ZZ )  /\  ( P  e.  QQ  /\  0  <  P ) )  ->  ( (
I  +  ( ( ( P  -  (
r  x.  I ) )  mod  P )  x.  N ) )  mod  P )  =  ( ( I  +  ( ( P  -  ( r  x.  I
) )  x.  N
) )  mod  P
) )
3020, 22, 25, 27, 28, 29syl32anc 1241 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  -  (
r  x.  I ) )  mod  P )  x.  N ) )  mod  P )  =  ( ( I  +  ( ( P  -  ( r  x.  I
) )  x.  N
) )  mod  P
) )
3113nncnd 8892 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  CC )
32313ad2ant1 1013 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  CC )
3332adantl 275 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  CC )
346zcnd 9335 . . . . . . . . . . . . 13  |-  ( r  e.  ( 1 ... ( P  -  1 ) )  ->  r  e.  CC )
3534adantr 274 . . . . . . . . . . . 12  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  r  e.  CC )
368zcnd 9335 . . . . . . . . . . . . 13  |-  ( I  e.  ( 1..^ P )  ->  I  e.  CC )
37363ad2ant3 1015 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  I  e.  CC )
38 mulcl 7901 . . . . . . . . . . . 12  |-  ( ( r  e.  CC  /\  I  e.  CC )  ->  ( r  x.  I
)  e.  CC )
3935, 37, 38syl2an 287 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  I )  e.  CC )
4023zcnd 9335 . . . . . . . . . . . . 13  |-  ( N  e.  ( 1..^ P )  ->  N  e.  CC )
41403ad2ant2 1014 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  N  e.  CC )
4241adantl 275 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  N  e.  CC )
4333, 39, 42subdird 8334 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  -  ( r  x.  I ) )  x.  N )  =  ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) ) )
4443oveq2d 5869 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  +  ( ( P  -  ( r  x.  I ) )  x.  N ) )  =  ( I  +  ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) ) ) )
4544oveq1d 5868 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( P  -  ( r  x.  I ) )  x.  N ) )  mod  P )  =  ( ( I  +  ( ( P  x.  N )  -  (
( r  x.  I
)  x.  N ) ) )  mod  P
) )
46 mulcom 7903 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  CC  /\  N  e.  CC )  ->  ( P  x.  N
)  =  ( N  x.  P ) )
4731, 40, 46syl2an 287 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( P  x.  N )  =  ( N  x.  P ) )
4847oveq1d 5868 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( P  x.  N )  mod  P )  =  ( ( N  x.  P
)  mod  P )
)
4923adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  N  e.  ZZ )
503adantr 274 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  P  e.  ZZ )
5150, 26syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  P  e.  QQ )
5213nngt0d 8922 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e.  Prime  ->  0  < 
P )
5352adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  0  <  P )
54 mulqmod0 10286 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( N  x.  P
)  mod  P )  =  0 )
5549, 51, 53, 54syl3anc 1233 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( N  x.  P )  mod  P )  =  0 )
5648, 55eqtrd 2203 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( P  x.  N )  mod  P )  =  0 )
57563adant3 1012 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( P  x.  N )  mod 
P )  =  0 )
5857adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  x.  N )  mod  P )  =  0 )
5935adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  r  e.  CC )
6037adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  e.  CC )
6159, 60, 42mul32d 8072 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
r  x.  I )  x.  N )  =  ( ( r  x.  N )  x.  I
) )
6261oveq1d 5868 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( r  x.  I
)  x.  N )  mod  P )  =  ( ( ( r  x.  N )  x.  I )  mod  P
) )
63 elfznn 10010 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  e.  ( 1 ... ( P  -  1 ) )  ->  r  e.  NN )
6463adantr 274 . . . . . . . . . . . . . . . . . . 19  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  r  e.  NN )
6564adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  r  e.  NN )
66 elfzo1 10146 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( 1..^ P )  <->  ( N  e.  NN  /\  P  e.  NN  /\  N  < 
P ) )
6766simp1bi 1007 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( 1..^ P )  ->  N  e.  NN )
68673ad2ant2 1014 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  N  e.  NN )
6968adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  N  e.  NN )
7065, 69nnmulcld 8927 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  N )  e.  NN )
71 nnq 9592 . . . . . . . . . . . . . . . . 17  |-  ( ( r  x.  N )  e.  NN  ->  (
r  x.  N )  e.  QQ )
7270, 71syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  N )  e.  QQ )
73 modqmulmod 10345 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( r  x.  N )  e.  QQ  /\  I  e.  ZZ )  /\  ( P  e.  QQ  /\  0  < 
P ) )  -> 
( ( ( ( r  x.  N )  mod  P )  x.  I )  mod  P
)  =  ( ( ( r  x.  N
)  x.  I )  mod  P ) )
7472, 18, 27, 28, 73syl22anc 1234 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( r  x.  N )  mod  P
)  x.  I )  mod  P )  =  ( ( ( r  x.  N )  x.  I )  mod  P
) )
7562, 74eqtr4d 2206 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( r  x.  I
)  x.  N )  mod  P )  =  ( ( ( ( r  x.  N )  mod  P )  x.  I )  mod  P
) )
7658, 75oveq12d 5871 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( P  x.  N
)  mod  P )  -  ( ( ( r  x.  I )  x.  N )  mod 
P ) )  =  ( 0  -  (
( ( ( r  x.  N )  mod 
P )  x.  I
)  mod  P )
) )
7776oveq1d 5868 . . . . . . . . . . . 12  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( P  x.  N )  mod  P
)  -  ( ( ( r  x.  I
)  x.  N )  mod  P ) )  mod  P )  =  ( ( 0  -  ( ( ( ( r  x.  N )  mod  P )  x.  I )  mod  P
) )  mod  P
) )
7815, 69nnmulcld 8927 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( P  x.  N )  e.  NN )
79 nnq 9592 . . . . . . . . . . . . . 14  |-  ( ( P  x.  N )  e.  NN  ->  ( P  x.  N )  e.  QQ )
8078, 79syl 14 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( P  x.  N )  e.  QQ )
81 elfzo1 10146 . . . . . . . . . . . . . . . . . . 19  |-  ( I  e.  ( 1..^ P )  <->  ( I  e.  NN  /\  P  e.  NN  /\  I  < 
P ) )
8281simp1bi 1007 . . . . . . . . . . . . . . . . . 18  |-  ( I  e.  ( 1..^ P )  ->  I  e.  NN )
83823ad2ant3 1015 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  I  e.  NN )
8483adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  e.  NN )
8565, 84nnmulcld 8927 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  I )  e.  NN )
8685, 69nnmulcld 8927 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
r  x.  I )  x.  N )  e.  NN )
87 nnq 9592 . . . . . . . . . . . . . 14  |-  ( ( ( r  x.  I
)  x.  N )  e.  NN  ->  (
( r  x.  I
)  x.  N )  e.  QQ )
8886, 87syl 14 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
r  x.  I )  x.  N )  e.  QQ )
89 modqsubmodmod 10339 . . . . . . . . . . . . 13  |-  ( ( ( ( P  x.  N )  e.  QQ  /\  ( ( r  x.  I )  x.  N
)  e.  QQ )  /\  ( P  e.  QQ  /\  0  < 
P ) )  -> 
( ( ( ( P  x.  N )  mod  P )  -  ( ( ( r  x.  I )  x.  N )  mod  P
) )  mod  P
)  =  ( ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P ) )
9080, 88, 27, 28, 89syl22anc 1234 . . . . . . . . . . . 12  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( P  x.  N )  mod  P
)  -  ( ( ( r  x.  I
)  x.  N )  mod  P ) )  mod  P )  =  ( ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N
) )  mod  P
) )
91 mulcom 7903 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  CC  /\  r  e.  CC )  ->  ( N  x.  r
)  =  ( r  x.  N ) )
9241, 34, 91syl2anr 288 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( N  x.  r )  =  ( r  x.  N ) )
9392oveq1d 5868 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  (
( N  x.  r
)  mod  P )  =  ( ( r  x.  N )  mod 
P ) )
9493eqeq1d 2179 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  (
( ( N  x.  r )  mod  P
)  =  1  <->  (
( r  x.  N
)  mod  P )  =  1 ) )
9594biimpd 143 . . . . . . . . . . . . . . . . . . 19  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  (
( ( N  x.  r )  mod  P
)  =  1  -> 
( ( r  x.  N )  mod  P
)  =  1 ) )
9695impancom 258 . . . . . . . . . . . . . . . . . 18  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( r  x.  N )  mod 
P )  =  1 ) )
9796imp 123 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
r  x.  N )  mod  P )  =  1 )
9897oveq1d 5868 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( r  x.  N
)  mod  P )  x.  I )  =  ( 1  x.  I ) )
9998oveq1d 5868 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( r  x.  N )  mod  P
)  x.  I )  mod  P )  =  ( ( 1  x.  I )  mod  P
) )
10099oveq2d 5869 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 0  -  ( ( ( ( r  x.  N
)  mod  P )  x.  I )  mod  P
) )  =  ( 0  -  ( ( 1  x.  I )  mod  P ) ) )
101100oveq1d 5868 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
0  -  ( ( ( ( r  x.  N )  mod  P
)  x.  I )  mod  P ) )  mod  P )  =  ( ( 0  -  ( ( 1  x.  I )  mod  P
) )  mod  P
) )
10260mulid2d 7938 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 1  x.  I )  =  I )
103102oveq1d 5868 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
1  x.  I )  mod  P )  =  ( I  mod  P
) )
10484nnnn0d 9188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  e.  NN0 )
105104nn0ge0d 9191 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  0  <_  I )
106 elfzolt2 10112 . . . . . . . . . . . . . . . . . . 19  |-  ( I  e.  ( 1..^ P )  ->  I  <  P )
1071063ad2ant3 1015 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  I  <  P
)
108107adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  <  P )
109 modqid 10305 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_  I  /\  I  <  P
) )  ->  (
I  mod  P )  =  I )
11020, 27, 105, 108, 109syl22anc 1234 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  mod  P )  =  I )
111103, 110eqtrd 2203 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
1  x.  I )  mod  P )  =  I )
112111oveq2d 5869 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 0  -  ( ( 1  x.  I )  mod 
P ) )  =  ( 0  -  I
) )
113112oveq1d 5868 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
0  -  ( ( 1  x.  I )  mod  P ) )  mod  P )  =  ( ( 0  -  I )  mod  P
) )
114101, 113eqtrd 2203 . . . . . . . . . . . 12  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
0  -  ( ( ( ( r  x.  N )  mod  P
)  x.  I )  mod  P ) )  mod  P )  =  ( ( 0  -  I )  mod  P
) )
11577, 90, 1143eqtr3d 2211 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P )  =  ( ( 0  -  I )  mod  P
) )
116115oveq2d 5869 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  +  ( ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N ) )  mod 
P ) )  =  ( I  +  ( ( 0  -  I
)  mod  P )
) )
117116oveq1d 5868 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P ) )  mod  P )  =  ( ( I  +  ( ( 0  -  I )  mod  P
) )  mod  P
) )
118 qsubcl 9597 . . . . . . . . . . 11  |-  ( ( ( P  x.  N
)  e.  QQ  /\  ( ( r  x.  I )  x.  N
)  e.  QQ )  ->  ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N
) )  e.  QQ )
11980, 88, 118syl2anc 409 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N ) )  e.  QQ )
120 modqadd2mod 10330 . . . . . . . . . 10  |-  ( ( ( ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N
) )  e.  QQ  /\  I  e.  QQ )  /\  ( P  e.  QQ  /\  0  < 
P ) )  -> 
( ( I  +  ( ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N
) )  mod  P
) )  mod  P
)  =  ( ( I  +  ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N ) ) )  mod  P ) )
121119, 20, 27, 28, 120syl22anc 1234 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P ) )  mod  P )  =  ( ( I  +  ( ( P  x.  N )  -  (
( r  x.  I
)  x.  N ) ) )  mod  P
) )
122 0zd 9224 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  0  e.  ZZ )
123122, 18zsubcld 9339 . . . . . . . . . . . 12  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 0  -  I )  e.  ZZ )
124 zq 9585 . . . . . . . . . . . 12  |-  ( ( 0  -  I )  e.  ZZ  ->  (
0  -  I )  e.  QQ )
125123, 124syl 14 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 0  -  I )  e.  QQ )
126 modqadd2mod 10330 . . . . . . . . . . 11  |-  ( ( ( ( 0  -  I )  e.  QQ  /\  I  e.  QQ )  /\  ( P  e.  QQ  /\  0  < 
P ) )  -> 
( ( I  +  ( ( 0  -  I )  mod  P
) )  mod  P
)  =  ( ( I  +  ( 0  -  I ) )  mod  P ) )
127125, 20, 27, 28, 126syl22anc 1234 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( 0  -  I )  mod  P ) )  mod  P )  =  ( ( I  +  ( 0  -  I
) )  mod  P
) )
128 0cnd 7913 . . . . . . . . . . . . . 14  |-  ( I  e.  ( 1..^ P )  ->  0  e.  CC )
12936, 128pncan3d 8233 . . . . . . . . . . . . 13  |-  ( I  e.  ( 1..^ P )  ->  ( I  +  ( 0  -  I ) )  =  0 )
1301293ad2ant3 1015 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( I  +  ( 0  -  I
) )  =  0 )
131130adantl 275 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  +  ( 0  -  I ) )  =  0 )
132131oveq1d 5868 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( 0  -  I ) )  mod  P )  =  ( 0  mod  P
) )
1333, 26syl 14 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  QQ )
134 q0mod 10311 . . . . . . . . . . . . 13  |-  ( ( P  e.  QQ  /\  0  <  P )  -> 
( 0  mod  P
)  =  0 )
135133, 52, 134syl2anc 409 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  ( 0  mod  P )  =  0 )
1361353ad2ant1 1013 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( 0  mod 
P )  =  0 )
137136adantl 275 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 0  mod  P )  =  0 )
138127, 132, 1373eqtrd 2207 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( 0  -  I )  mod  P ) )  mod  P )  =  0 )
139117, 121, 1383eqtr3d 2211 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N ) ) )  mod  P )  =  0 )
14030, 45, 1393eqtrd 2207 . . . . . . 7  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  -  (
r  x.  I ) )  mod  P )  x.  N ) )  mod  P )  =  0 )
141 oveq1 5860 . . . . . . . . . . 11  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
j  x.  N )  =  ( ( ( P  -  ( r  x.  I ) )  mod  P )  x.  N ) )
142141oveq2d 5869 . . . . . . . . . 10  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
I  +  ( j  x.  N ) )  =  ( I  +  ( ( ( P  -  ( r  x.  I ) )  mod 
P )  x.  N
) ) )
143142oveq1d 5868 . . . . . . . . 9  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
( I  +  ( j  x.  N ) )  mod  P )  =  ( ( I  +  ( ( ( P  -  ( r  x.  I ) )  mod  P )  x.  N ) )  mod 
P ) )
144143eqeq1d 2179 . . . . . . . 8  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  (
( I  +  ( ( ( P  -  ( r  x.  I
) )  mod  P
)  x.  N ) )  mod  P )  =  0 ) )
145144rspcev 2834 . . . . . . 7  |-  ( ( ( ( P  -  ( r  x.  I
) )  mod  P
)  e.  ( 0..^ P )  /\  (
( I  +  ( ( ( P  -  ( r  x.  I
) )  mod  P
)  x.  N ) )  mod  P )  =  0 )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
14617, 140, 145syl2anc 409 . . . . . 6  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 )
147146ex 114 . . . . 5  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
148147rexlimiva 2582 . . . 4  |-  ( E. r  e.  ( 1 ... ( P  - 
1 ) ) ( ( N  x.  r
)  mod  P )  =  1  ->  (
( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
1491, 2, 1483syl 17 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
1501493adant3 1012 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
151150pm2.43i 49 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449   E!wreu 2450   class class class wbr 3989  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090   NNcn 8878   ZZcz 9212   QQcq 9578   ...cfz 9965  ..^cfzo 10098    mod cmo 10278   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-phi 12165
This theorem is referenced by:  nnnn0modprm0  12209
  Copyright terms: Public domain W3C validator