ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuss Unicode version

Theorem reuss 3444
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
Assertion
Ref Expression
reuss  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  E! x  e.  A  ph )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem reuss
StepHypRef Expression
1 idd 21 . . . 4  |-  ( x  e.  A  ->  ( ph  ->  ph ) )
21rgen 2550 . . 3  |-  A. x  e.  A  ( ph  ->  ph )
3 reuss2 3443 . . 3  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ph ) )  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ph )
)  ->  E! x  e.  A  ph )
42, 3mpanl2 435 . 2  |-  ( ( A  C_  B  /\  ( E. x  e.  A  ph 
/\  E! x  e.  B  ph ) )  ->  E! x  e.  A  ph )
543impb 1201 1  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  E! x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167   A.wral 2475   E.wrex 2476   E!wreu 2477    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-rex 2481  df-reu 2482  df-in 3163  df-ss 3170
This theorem is referenced by:  riotass  5905
  Copyright terms: Public domain W3C validator