![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reuss | GIF version |
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.) |
Ref | Expression |
---|---|
reuss | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜑)) | |
2 | 1 | rgen 2530 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑) |
3 | reuss2 3417 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) | |
4 | 2, 3 | mpanl2 435 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) |
5 | 4 | 3impb 1199 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ∃!wreu 2457 ⊆ wss 3131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-ral 2460 df-rex 2461 df-reu 2462 df-in 3137 df-ss 3144 |
This theorem is referenced by: riotass 5860 |
Copyright terms: Public domain | W3C validator |