| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reuss | GIF version | ||
| Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.) |
| Ref | Expression |
|---|---|
| reuss | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜑)) | |
| 2 | 1 | rgen 2560 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑) |
| 3 | reuss2 3454 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) | |
| 4 | 2, 3 | mpanl2 435 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) |
| 5 | 4 | 3impb 1202 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ∃!wreu 2487 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-ral 2490 df-rex 2491 df-reu 2492 df-in 3173 df-ss 3180 |
| This theorem is referenced by: riotass 5934 |
| Copyright terms: Public domain | W3C validator |