| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reuss | GIF version | ||
| Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.) | 
| Ref | Expression | 
|---|---|
| reuss | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | idd 21 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜑)) | |
| 2 | 1 | rgen 2550 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑) | 
| 3 | reuss2 3443 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) | |
| 4 | 2, 3 | mpanl2 435 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) | 
| 5 | 4 | 3impb 1201 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∃!wreu 2477 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-rex 2481 df-reu 2482 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: riotass 5905 | 
| Copyright terms: Public domain | W3C validator |