ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuun1 Unicode version

Theorem reuun1 3404
Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun1  |-  ( ( E. x  e.  A  ph 
/\  E! x  e.  ( A  u.  B
) ( ph  \/  ps ) )  ->  E! x  e.  A  ph )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem reuun1
StepHypRef Expression
1 ssun1 3285 . 2  |-  A  C_  ( A  u.  B
)
2 orc 702 . . 3  |-  ( ph  ->  ( ph  \/  ps ) )
32rgenw 2521 . 2  |-  A. x  e.  A  ( ph  ->  ( ph  \/  ps ) )
4 reuss2 3402 . 2  |-  ( ( ( A  C_  ( A  u.  B )  /\  A. x  e.  A  ( ph  ->  ( ph  \/  ps ) ) )  /\  ( E. x  e.  A  ph  /\  E! x  e.  ( A  u.  B ) ( ph  \/  ps ) ) )  ->  E! x  e.  A  ph )
51, 3, 4mpanl12 433 1  |-  ( ( E. x  e.  A  ph 
/\  E! x  e.  ( A  u.  B
) ( ph  \/  ps ) )  ->  E! x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698   A.wral 2444   E.wrex 2445   E!wreu 2446    u. cun 3114    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator