ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexdifpr Unicode version

Theorem rexdifpr 3599
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.)
Assertion
Ref Expression
rexdifpr  |-  ( E. x  e.  ( A 
\  { B ,  C } ) ph  <->  E. x  e.  A  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )

Proof of Theorem rexdifpr
StepHypRef Expression
1 eldifpr 3598 . . . . 5  |-  ( x  e.  ( A  \  { B ,  C }
)  <->  ( x  e.  A  /\  x  =/= 
B  /\  x  =/=  C ) )
2 3anass 971 . . . . 5  |-  ( ( x  e.  A  /\  x  =/=  B  /\  x  =/=  C )  <->  ( x  e.  A  /\  (
x  =/=  B  /\  x  =/=  C ) ) )
31, 2bitri 183 . . . 4  |-  ( x  e.  ( A  \  { B ,  C }
)  <->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C ) ) )
43anbi1i 454 . . 3  |-  ( ( x  e.  ( A 
\  { B ,  C } )  /\  ph ) 
<->  ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C ) )  /\  ph ) )
5 anass 399 . . . 4  |-  ( ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C
) )  /\  ph ) 
<->  ( x  e.  A  /\  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
) )
6 df-3an 969 . . . . . 6  |-  ( ( x  =/=  B  /\  x  =/=  C  /\  ph ) 
<->  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
)
76bicomi 131 . . . . 5  |-  ( ( ( x  =/=  B  /\  x  =/=  C
)  /\  ph )  <->  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )
87anbi2i 453 . . . 4  |-  ( ( x  e.  A  /\  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
)  <->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph )
) )
95, 8bitri 183 . . 3  |-  ( ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C
) )  /\  ph ) 
<->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph ) ) )
104, 9bitri 183 . 2  |-  ( ( x  e.  ( A 
\  { B ,  C } )  /\  ph ) 
<->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph ) ) )
1110rexbii2 2475 1  |-  ( E. x  e.  ( A 
\  { B ,  C } ) ph  <->  E. x  e.  A  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 967    e. wcel 2135    =/= wne 2334   E.wrex 2443    \ cdif 3109   {cpr 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-rex 2448  df-v 2724  df-dif 3114  df-un 3116  df-sn 3577  df-pr 3578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator