Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexdifpr | Unicode version |
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.) |
Ref | Expression |
---|---|
rexdifpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifpr 3598 | . . . . 5 | |
2 | 3anass 971 | . . . . 5 | |
3 | 1, 2 | bitri 183 | . . . 4 |
4 | 3 | anbi1i 454 | . . 3 |
5 | anass 399 | . . . 4 | |
6 | df-3an 969 | . . . . . 6 | |
7 | 6 | bicomi 131 | . . . . 5 |
8 | 7 | anbi2i 453 | . . . 4 |
9 | 5, 8 | bitri 183 | . . 3 |
10 | 4, 9 | bitri 183 | . 2 |
11 | 10 | rexbii2 2475 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 967 wcel 2135 wne 2334 wrex 2443 cdif 3109 cpr 3572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-rex 2448 df-v 2724 df-dif 3114 df-un 3116 df-sn 3577 df-pr 3578 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |