ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexdifpr Unicode version

Theorem rexdifpr 3661
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.)
Assertion
Ref Expression
rexdifpr  |-  ( E. x  e.  ( A 
\  { B ,  C } ) ph  <->  E. x  e.  A  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )

Proof of Theorem rexdifpr
StepHypRef Expression
1 eldifpr 3660 . . . . 5  |-  ( x  e.  ( A  \  { B ,  C }
)  <->  ( x  e.  A  /\  x  =/= 
B  /\  x  =/=  C ) )
2 3anass 985 . . . . 5  |-  ( ( x  e.  A  /\  x  =/=  B  /\  x  =/=  C )  <->  ( x  e.  A  /\  (
x  =/=  B  /\  x  =/=  C ) ) )
31, 2bitri 184 . . . 4  |-  ( x  e.  ( A  \  { B ,  C }
)  <->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C ) ) )
43anbi1i 458 . . 3  |-  ( ( x  e.  ( A 
\  { B ,  C } )  /\  ph ) 
<->  ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C ) )  /\  ph ) )
5 anass 401 . . . 4  |-  ( ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C
) )  /\  ph ) 
<->  ( x  e.  A  /\  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
) )
6 df-3an 983 . . . . . 6  |-  ( ( x  =/=  B  /\  x  =/=  C  /\  ph ) 
<->  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
)
76bicomi 132 . . . . 5  |-  ( ( ( x  =/=  B  /\  x  =/=  C
)  /\  ph )  <->  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )
87anbi2i 457 . . . 4  |-  ( ( x  e.  A  /\  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
)  <->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph )
) )
95, 8bitri 184 . . 3  |-  ( ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C
) )  /\  ph ) 
<->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph ) ) )
104, 9bitri 184 . 2  |-  ( ( x  e.  ( A 
\  { B ,  C } )  /\  ph ) 
<->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph ) ) )
1110rexbii2 2517 1  |-  ( E. x  e.  ( A 
\  { B ,  C } ) ph  <->  E. x  e.  A  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2176    =/= wne 2376   E.wrex 2485    \ cdif 3163   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-sn 3639  df-pr 3640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator