ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexdifpr Unicode version

Theorem rexdifpr 3632
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.)
Assertion
Ref Expression
rexdifpr  |-  ( E. x  e.  ( A 
\  { B ,  C } ) ph  <->  E. x  e.  A  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )

Proof of Theorem rexdifpr
StepHypRef Expression
1 eldifpr 3631 . . . . 5  |-  ( x  e.  ( A  \  { B ,  C }
)  <->  ( x  e.  A  /\  x  =/= 
B  /\  x  =/=  C ) )
2 3anass 983 . . . . 5  |-  ( ( x  e.  A  /\  x  =/=  B  /\  x  =/=  C )  <->  ( x  e.  A  /\  (
x  =/=  B  /\  x  =/=  C ) ) )
31, 2bitri 184 . . . 4  |-  ( x  e.  ( A  \  { B ,  C }
)  <->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C ) ) )
43anbi1i 458 . . 3  |-  ( ( x  e.  ( A 
\  { B ,  C } )  /\  ph ) 
<->  ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C ) )  /\  ph ) )
5 anass 401 . . . 4  |-  ( ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C
) )  /\  ph ) 
<->  ( x  e.  A  /\  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
) )
6 df-3an 981 . . . . . 6  |-  ( ( x  =/=  B  /\  x  =/=  C  /\  ph ) 
<->  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
)
76bicomi 132 . . . . 5  |-  ( ( ( x  =/=  B  /\  x  =/=  C
)  /\  ph )  <->  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )
87anbi2i 457 . . . 4  |-  ( ( x  e.  A  /\  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
)  <->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph )
) )
95, 8bitri 184 . . 3  |-  ( ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C
) )  /\  ph ) 
<->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph ) ) )
104, 9bitri 184 . 2  |-  ( ( x  e.  ( A 
\  { B ,  C } )  /\  ph ) 
<->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph ) ) )
1110rexbii2 2498 1  |-  ( E. x  e.  ( A 
\  { B ,  C } ) ph  <->  E. x  e.  A  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 979    e. wcel 2158    =/= wne 2357   E.wrex 2466    \ cdif 3138   {cpr 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-sn 3610  df-pr 3611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator