ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsrlemb Unicode version

Theorem suplocsrlemb 7614
Description: Lemma for suplocsr 7617. The set  B is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
Hypotheses
Ref Expression
suplocsrlem.b  |-  B  =  { w  e.  P.  |  ( C  +R  [
<. w ,  1P >. ]  ~R  )  e.  A }
suplocsrlem.ss  |-  ( ph  ->  A  C_  R. )
suplocsrlem.c  |-  ( ph  ->  C  e.  A )
suplocsrlem.ub  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
suplocsrlem.loc  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
Assertion
Ref Expression
suplocsrlemb  |-  ( ph  ->  A. u  e.  P.  A. v  e.  P.  (
u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
Distinct variable groups:    A, q, w   
x, A, y, z   
z, B    C, q, w    x, C, y, z    ph, q, u, v, z   
x, u, y    y,
v
Allowed substitution hints:    ph( x, y, w)    A( v, u)    B( x, y, w, v, u, q)    C( v, u)

Proof of Theorem suplocsrlemb
StepHypRef Expression
1 simpr 109 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  u  <P  v )
2 simplrl 524 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  u  e.  P. )
3 simplrr 525 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  v  e.  P. )
4 suplocsrlem.ss . . . . . . . . 9  |-  ( ph  ->  A  C_  R. )
5 suplocsrlem.c . . . . . . . . 9  |-  ( ph  ->  C  e.  A )
64, 5sseldd 3098 . . . . . . . 8  |-  ( ph  ->  C  e.  R. )
76ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  C  e.  R. )
8 ltpsrprg 7611 . . . . . . 7  |-  ( ( u  e.  P.  /\  v  e.  P.  /\  C  e.  R. )  ->  (
( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  u 
<P  v ) )
92, 3, 7, 8syl3anc 1216 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  u  <P  v ) )
101, 9mpbird 166 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  ) )
11 breq2 3933 . . . . . . 7  |-  ( y  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  y  <->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  ) ) )
12 breq2 3933 . . . . . . . . 9  |-  ( y  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
z  <R  y  <->  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
1312ralbidv 2437 . . . . . . . 8  |-  ( y  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  ( A. z  e.  A  z  <R  y  <->  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
1413orbi2d 779 . . . . . . 7  |-  ( y  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
( E. z  e.  A  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y )  <->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) ) )
1511, 14imbi12d 233 . . . . . 6  |-  ( y  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
( ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  y  ->  ( E. z  e.  A  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y ) )  <-> 
( ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  ( E. z  e.  A  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  ) ) ) ) )
16 breq1 3932 . . . . . . . . 9  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
x  <R  y  <->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R 
y ) )
17 breq1 3932 . . . . . . . . . . 11  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
x  <R  z  <->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R 
z ) )
1817rexbidv 2438 . . . . . . . . . 10  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  ( E. z  e.  A  x  <R  z  <->  E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R 
z ) )
1918orbi1d 780 . . . . . . . . 9  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y )  <->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
2016, 19imbi12d 233 . . . . . . . 8  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) )  <-> 
( ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  y  ->  ( E. z  e.  A  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y ) ) ) )
2120ralbidv 2437 . . . . . . 7  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  ( A. y  e.  R.  ( x  <R  y  -> 
( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) )  <->  A. y  e.  R.  ( ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  y  ->  ( E. z  e.  A  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y ) ) ) )
22 suplocsrlem.loc . . . . . . . 8  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
2322ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  A. x  e.  R.  A. y  e. 
R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y
) ) )
24 1pr 7362 . . . . . . . . . . . 12  |-  1P  e.  P.
2524a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  1P  e.  P. )
262, 25opelxpd 4572 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  <. u ,  1P >.  e.  ( P.  X.  P. ) )
27 enrex 7545 . . . . . . . . . . 11  |-  ~R  e.  _V
2827ecelqsi 6483 . . . . . . . . . 10  |-  ( <.
u ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. u ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
2926, 28syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  [ <. u ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
30 df-nr 7535 . . . . . . . . 9  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
3129, 30eleqtrrdi 2233 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  [ <. u ,  1P >. ]  ~R  e.  R. )
32 addclsr 7561 . . . . . . . 8  |-  ( ( C  e.  R.  /\  [
<. u ,  1P >. ]  ~R  e.  R. )  ->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  e.  R. )
337, 31, 32syl2anc 408 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  e. 
R. )
3421, 23, 33rspcdva 2794 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  A. y  e.  R.  ( ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  y  ->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
353, 25opelxpd 4572 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  <. v ,  1P >.  e.  ( P.  X.  P. ) )
3627ecelqsi 6483 . . . . . . . . 9  |-  ( <.
v ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. v ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
3736, 30eleqtrrdi 2233 . . . . . . . 8  |-  ( <.
v ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. v ,  1P >. ]  ~R  e.  R. )
3835, 37syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  [ <. v ,  1P >. ]  ~R  e.  R. )
39 addclsr 7561 . . . . . . 7  |-  ( ( C  e.  R.  /\  [
<. v ,  1P >. ]  ~R  e.  R. )  ->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R. )
407, 38, 39syl2anc 408 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e. 
R. )
4115, 34, 40rspcdva 2794 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) ) )
4210, 41mpd 13 . . . 4  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
432ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  u  e.  P. )
447ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  C  e.  R. )
45 mappsrprg 7612 . . . . . . . . . . 11  |-  ( ( u  e.  P.  /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [
<. u ,  1P >. ]  ~R  ) )
4643, 44, 45syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  ( C  +R  -1R )  <R 
( C  +R  [ <. u ,  1P >. ]  ~R  ) )
47 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )
48 ltsosr 7572 . . . . . . . . . . 11  |-  <R  Or  R.
49 ltrelsr 7546 . . . . . . . . . . 11  |-  <R  C_  ( R.  X.  R. )
5048, 49sotri 4934 . . . . . . . . . 10  |-  ( ( ( C  +R  -1R )  <R  ( C  +R  [
<. u ,  1P >. ]  ~R  )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  ( C  +R  -1R )  <R 
z )
5146, 47, 50syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  ( C  +R  -1R )  <R 
z )
52 map2psrprg 7613 . . . . . . . . . 10  |-  ( C  e.  R.  ->  (
( C  +R  -1R )  <R  z  <->  E. q  e.  P.  ( C  +R  [
<. q ,  1P >. ]  ~R  )  =  z ) )
5344, 52syl 14 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  (
( C  +R  -1R )  <R  z  <->  E. q  e.  P.  ( C  +R  [
<. q ,  1P >. ]  ~R  )  =  z ) )
5451, 53mpbid 146 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  E. q  e.  P.  ( C  +R  [
<. q ,  1P >. ]  ~R  )  =  z )
55 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )
56 simp-4r 531 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
z  e.  A )
5755, 56eqeltrd 2216 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A
)
58 simpllr 523 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z
)
5958, 55breqtrrd 3956 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. q ,  1P >. ]  ~R  )
)
602ad4antr 485 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  ->  u  e.  P. )
61 simplr 519 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
q  e.  P. )
6244ad2antrr 479 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  ->  C  e.  R. )
63 ltpsrprg 7611 . . . . . . . . . . . . 13  |-  ( ( u  e.  P.  /\  q  e.  P.  /\  C  e.  R. )  ->  (
( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. q ,  1P >. ]  ~R  )  <->  u 
<P  q ) )
6460, 61, 62, 63syl3anc 1216 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. q ,  1P >. ]  ~R  )  <->  u 
<P  q ) )
6559, 64mpbid 146 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  ->  u  <P  q )
6657, 65jca 304 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( ( C  +R  [
<. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) )
6766ex 114 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( u  e.  P.  /\  v  e. 
P. ) )  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z
)  /\  q  e.  P. )  ->  ( ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z  ->  ( ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) ) )
6867reximdva 2534 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  ( E. q  e.  P.  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z  ->  E. q  e.  P.  (
( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) ) )
6954, 68mpd 13 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  E. q  e.  P.  ( ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) )
70 opeq1 3705 . . . . . . . . . . . . . 14  |-  ( w  =  q  ->  <. w ,  1P >.  =  <. q ,  1P >. )
7170eceq1d 6465 . . . . . . . . . . . . 13  |-  ( w  =  q  ->  [ <. w ,  1P >. ]  ~R  =  [ <. q ,  1P >. ]  ~R  )
7271oveq2d 5790 . . . . . . . . . . . 12  |-  ( w  =  q  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  ( C  +R  [
<. q ,  1P >. ]  ~R  ) )
7372eleq1d 2208 . . . . . . . . . . 11  |-  ( w  =  q  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A )
)
74 suplocsrlem.b . . . . . . . . . . 11  |-  B  =  { w  e.  P.  |  ( C  +R  [
<. w ,  1P >. ]  ~R  )  e.  A }
7573, 74elrab2 2843 . . . . . . . . . 10  |-  ( q  e.  B  <->  ( q  e.  P.  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A ) )
7675anbi1i 453 . . . . . . . . 9  |-  ( ( q  e.  B  /\  u  <P  q )  <->  ( (
q  e.  P.  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A )  /\  u  <P  q ) )
77 anass 398 . . . . . . . . 9  |-  ( ( ( q  e.  P.  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A
)  /\  u  <P  q )  <->  ( q  e. 
P.  /\  ( ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) ) )
7876, 77bitri 183 . . . . . . . 8  |-  ( ( q  e.  B  /\  u  <P  q )  <->  ( q  e.  P.  /\  ( ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) ) )
7978rexbii2 2446 . . . . . . 7  |-  ( E. q  e.  B  u 
<P  q  <->  E. q  e.  P.  ( ( C  +R  [
<. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) )
8069, 79sylibr 133 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  E. q  e.  B  u  <P  q )
8180rexlimdva2 2552 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  ->  E. q  e.  B  u  <P  q ) )
82 breq1 3932 . . . . . . . . 9  |-  ( z  =  ( C  +R  [
<. q ,  1P >. ]  ~R  )  ->  (
z  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  ( C  +R  [ <. q ,  1P >. ]  ~R  )  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
83 simplr 519 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )
84 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  q  e.  B )
8584, 75sylib 121 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  (
q  e.  P.  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A )
)
8685simprd 113 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A )
8782, 83, 86rspcdva 2794 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  ( C  +R  [ <. q ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )
8885simpld 111 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  q  e.  P. )
893ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  v  e.  P. )
907ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  C  e.  R. )
91 ltpsrprg 7611 . . . . . . . . 9  |-  ( ( q  e.  P.  /\  v  e.  P.  /\  C  e.  R. )  ->  (
( C  +R  [ <. q ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  q 
<P  v ) )
9288, 89, 90, 91syl3anc 1216 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  (
( C  +R  [ <. q ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  q 
<P  v ) )
9387, 92mpbid 146 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  q  <P  v )
9493ralrimiva 2505 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  ->  A. q  e.  B  q  <P  v )
9594ex 114 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  A. q  e.  B  q  <P  v ) )
9681, 95orim12d 775 . . . 4  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  -> 
( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
9742, 96mpd 13 . . 3  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) )
9897ex 114 . 2  |-  ( (
ph  /\  ( u  e.  P.  /\  v  e. 
P. ) )  -> 
( u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
9998ralrimivva 2514 1  |-  ( ph  ->  A. u  e.  P.  A. v  e.  P.  (
u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420    C_ wss 3071   <.cop 3530   class class class wbr 3929    X. cxp 4537  (class class class)co 5774   [cec 6427   /.cqs 6428   P.cnp 7099   1Pc1p 7100    <P cltp 7103    ~R cer 7104   R.cnr 7105   -1Rcm1r 7108    +R cplr 7109    <R cltr 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-i1p 7275  df-iplp 7276  df-imp 7277  df-iltp 7278  df-enr 7534  df-nr 7535  df-plr 7536  df-mr 7537  df-ltr 7538  df-0r 7539  df-1r 7540  df-m1r 7541
This theorem is referenced by:  suplocsrlempr  7615
  Copyright terms: Public domain W3C validator