ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsrlemb Unicode version

Theorem suplocsrlemb 7954
Description: Lemma for suplocsr 7957. The set  B is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
Hypotheses
Ref Expression
suplocsrlem.b  |-  B  =  { w  e.  P.  |  ( C  +R  [
<. w ,  1P >. ]  ~R  )  e.  A }
suplocsrlem.ss  |-  ( ph  ->  A  C_  R. )
suplocsrlem.c  |-  ( ph  ->  C  e.  A )
suplocsrlem.ub  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
suplocsrlem.loc  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
Assertion
Ref Expression
suplocsrlemb  |-  ( ph  ->  A. u  e.  P.  A. v  e.  P.  (
u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
Distinct variable groups:    A, q, w   
x, A, y, z   
z, B    C, q, w    x, C, y, z    ph, q, u, v, z   
x, u, y    y,
v
Allowed substitution hints:    ph( x, y, w)    A( v, u)    B( x, y, w, v, u, q)    C( v, u)

Proof of Theorem suplocsrlemb
StepHypRef Expression
1 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  u  <P  v )
2 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  u  e.  P. )
3 simplrr 536 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  v  e.  P. )
4 suplocsrlem.ss . . . . . . . . 9  |-  ( ph  ->  A  C_  R. )
5 suplocsrlem.c . . . . . . . . 9  |-  ( ph  ->  C  e.  A )
64, 5sseldd 3202 . . . . . . . 8  |-  ( ph  ->  C  e.  R. )
76ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  C  e.  R. )
8 ltpsrprg 7951 . . . . . . 7  |-  ( ( u  e.  P.  /\  v  e.  P.  /\  C  e.  R. )  ->  (
( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  u 
<P  v ) )
92, 3, 7, 8syl3anc 1250 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  u  <P  v ) )
101, 9mpbird 167 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  ) )
11 breq2 4063 . . . . . . 7  |-  ( y  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  y  <->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  ) ) )
12 breq2 4063 . . . . . . . . 9  |-  ( y  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
z  <R  y  <->  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
1312ralbidv 2508 . . . . . . . 8  |-  ( y  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  ( A. z  e.  A  z  <R  y  <->  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
1413orbi2d 792 . . . . . . 7  |-  ( y  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
( E. z  e.  A  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y )  <->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) ) )
1511, 14imbi12d 234 . . . . . 6  |-  ( y  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
( ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  y  ->  ( E. z  e.  A  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y ) )  <-> 
( ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  ( E. z  e.  A  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  ) ) ) ) )
16 breq1 4062 . . . . . . . . 9  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
x  <R  y  <->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R 
y ) )
17 breq1 4062 . . . . . . . . . . 11  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
x  <R  z  <->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R 
z ) )
1817rexbidv 2509 . . . . . . . . . 10  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  ( E. z  e.  A  x  <R  z  <->  E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R 
z ) )
1918orbi1d 793 . . . . . . . . 9  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y )  <->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
2016, 19imbi12d 234 . . . . . . . 8  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) )  <-> 
( ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  y  ->  ( E. z  e.  A  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y ) ) ) )
2120ralbidv 2508 . . . . . . 7  |-  ( x  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  ( A. y  e.  R.  ( x  <R  y  -> 
( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) )  <->  A. y  e.  R.  ( ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  y  ->  ( E. z  e.  A  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y ) ) ) )
22 suplocsrlem.loc . . . . . . . 8  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
2322ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  A. x  e.  R.  A. y  e. 
R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y
) ) )
24 1pr 7702 . . . . . . . . . . . 12  |-  1P  e.  P.
2524a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  1P  e.  P. )
262, 25opelxpd 4726 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  <. u ,  1P >.  e.  ( P.  X.  P. ) )
27 enrex 7885 . . . . . . . . . . 11  |-  ~R  e.  _V
2827ecelqsi 6699 . . . . . . . . . 10  |-  ( <.
u ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. u ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
2926, 28syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  [ <. u ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
30 df-nr 7875 . . . . . . . . 9  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
3129, 30eleqtrrdi 2301 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  [ <. u ,  1P >. ]  ~R  e.  R. )
32 addclsr 7901 . . . . . . . 8  |-  ( ( C  e.  R.  /\  [
<. u ,  1P >. ]  ~R  e.  R. )  ->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  e.  R. )
337, 31, 32syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  e. 
R. )
3421, 23, 33rspcdva 2889 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  A. y  e.  R.  ( ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  y  ->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
353, 25opelxpd 4726 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  <. v ,  1P >.  e.  ( P.  X.  P. ) )
3627ecelqsi 6699 . . . . . . . . 9  |-  ( <.
v ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. v ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
3736, 30eleqtrrdi 2301 . . . . . . . 8  |-  ( <.
v ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. v ,  1P >. ]  ~R  e.  R. )
3835, 37syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  [ <. v ,  1P >. ]  ~R  e.  R. )
39 addclsr 7901 . . . . . . 7  |-  ( ( C  e.  R.  /\  [
<. v ,  1P >. ]  ~R  e.  R. )  ->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R. )
407, 38, 39syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e. 
R. )
4115, 34, 40rspcdva 2889 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) ) )
4210, 41mpd 13 . . . 4  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
432ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  u  e.  P. )
447ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  C  e.  R. )
45 mappsrprg 7952 . . . . . . . . . . 11  |-  ( ( u  e.  P.  /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [
<. u ,  1P >. ]  ~R  ) )
4643, 44, 45syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  ( C  +R  -1R )  <R 
( C  +R  [ <. u ,  1P >. ]  ~R  ) )
47 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )
48 ltsosr 7912 . . . . . . . . . . 11  |-  <R  Or  R.
49 ltrelsr 7886 . . . . . . . . . . 11  |-  <R  C_  ( R.  X.  R. )
5048, 49sotri 5097 . . . . . . . . . 10  |-  ( ( ( C  +R  -1R )  <R  ( C  +R  [
<. u ,  1P >. ]  ~R  )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  ( C  +R  -1R )  <R 
z )
5146, 47, 50syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  ( C  +R  -1R )  <R 
z )
52 map2psrprg 7953 . . . . . . . . . 10  |-  ( C  e.  R.  ->  (
( C  +R  -1R )  <R  z  <->  E. q  e.  P.  ( C  +R  [
<. q ,  1P >. ]  ~R  )  =  z ) )
5344, 52syl 14 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  (
( C  +R  -1R )  <R  z  <->  E. q  e.  P.  ( C  +R  [
<. q ,  1P >. ]  ~R  )  =  z ) )
5451, 53mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  E. q  e.  P.  ( C  +R  [
<. q ,  1P >. ]  ~R  )  =  z )
55 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )
56 simp-4r 542 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
z  e.  A )
5755, 56eqeltrd 2284 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A
)
58 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z
)
5958, 55breqtrrd 4087 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. q ,  1P >. ]  ~R  )
)
602ad4antr 494 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  ->  u  e.  P. )
61 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
q  e.  P. )
6244ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  ->  C  e.  R. )
63 ltpsrprg 7951 . . . . . . . . . . . . 13  |-  ( ( u  e.  P.  /\  q  e.  P.  /\  C  e.  R. )  ->  (
( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. q ,  1P >. ]  ~R  )  <->  u 
<P  q ) )
6460, 61, 62, 63syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( ( C  +R  [
<. u ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. q ,  1P >. ]  ~R  )  <->  u 
<P  q ) )
6559, 64mpbid 147 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  ->  u  <P  q )
6657, 65jca 306 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  /\  q  e.  P. )  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z )  -> 
( ( C  +R  [
<. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) )
6766ex 115 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( u  e.  P.  /\  v  e. 
P. ) )  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z
)  /\  q  e.  P. )  ->  ( ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z  ->  ( ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) ) )
6867reximdva 2610 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  ( E. q  e.  P.  ( C  +R  [ <. q ,  1P >. ]  ~R  )  =  z  ->  E. q  e.  P.  (
( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) ) )
6954, 68mpd 13 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  E. q  e.  P.  ( ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) )
70 opeq1 3833 . . . . . . . . . . . . . 14  |-  ( w  =  q  ->  <. w ,  1P >.  =  <. q ,  1P >. )
7170eceq1d 6679 . . . . . . . . . . . . 13  |-  ( w  =  q  ->  [ <. w ,  1P >. ]  ~R  =  [ <. q ,  1P >. ]  ~R  )
7271oveq2d 5983 . . . . . . . . . . . 12  |-  ( w  =  q  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  ( C  +R  [
<. q ,  1P >. ]  ~R  ) )
7372eleq1d 2276 . . . . . . . . . . 11  |-  ( w  =  q  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A )
)
74 suplocsrlem.b . . . . . . . . . . 11  |-  B  =  { w  e.  P.  |  ( C  +R  [
<. w ,  1P >. ]  ~R  )  e.  A }
7573, 74elrab2 2939 . . . . . . . . . 10  |-  ( q  e.  B  <->  ( q  e.  P.  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A ) )
7675anbi1i 458 . . . . . . . . 9  |-  ( ( q  e.  B  /\  u  <P  q )  <->  ( (
q  e.  P.  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A )  /\  u  <P  q ) )
77 anass 401 . . . . . . . . 9  |-  ( ( ( q  e.  P.  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A
)  /\  u  <P  q )  <->  ( q  e. 
P.  /\  ( ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) ) )
7876, 77bitri 184 . . . . . . . 8  |-  ( ( q  e.  B  /\  u  <P  q )  <->  ( q  e.  P.  /\  ( ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) ) )
7978rexbii2 2519 . . . . . . 7  |-  ( E. q  e.  B  u 
<P  q  <->  E. q  e.  P.  ( ( C  +R  [
<. q ,  1P >. ]  ~R  )  e.  A  /\  u  <P  q ) )
8069, 79sylibr 134 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  z  e.  A )  /\  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z )  ->  E. q  e.  B  u  <P  q )
8180rexlimdva2 2628 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  ->  E. q  e.  B  u  <P  q ) )
82 breq1 4062 . . . . . . . . 9  |-  ( z  =  ( C  +R  [
<. q ,  1P >. ]  ~R  )  ->  (
z  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  ( C  +R  [ <. q ,  1P >. ]  ~R  )  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
83 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )
84 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  q  e.  B )
8584, 75sylib 122 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  (
q  e.  P.  /\  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A )
)
8685simprd 114 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  ( C  +R  [ <. q ,  1P >. ]  ~R  )  e.  A )
8782, 83, 86rspcdva 2889 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  ( C  +R  [ <. q ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )
8885simpld 112 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  q  e.  P. )
893ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  v  e.  P. )
907ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  C  e.  R. )
91 ltpsrprg 7951 . . . . . . . . 9  |-  ( ( q  e.  P.  /\  v  e.  P.  /\  C  e.  R. )  ->  (
( C  +R  [ <. q ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  q 
<P  v ) )
9288, 89, 90, 91syl3anc 1250 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  (
( C  +R  [ <. q ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  q 
<P  v ) )
9387, 92mpbid 147 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  /\  q  e.  B )  ->  q  <P  v )
9493ralrimiva 2581 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  /\  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  ->  A. q  e.  B  q  <P  v )
9594ex 115 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  A. q  e.  B  q  <P  v ) )
9681, 95orim12d 788 . . . 4  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( ( E. z  e.  A  ( C  +R  [ <. u ,  1P >. ]  ~R  )  <R  z  \/  A. z  e.  A  z  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )  -> 
( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
9742, 96mpd 13 . . 3  |-  ( ( ( ph  /\  (
u  e.  P.  /\  v  e.  P. )
)  /\  u  <P  v )  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) )
9897ex 115 . 2  |-  ( (
ph  /\  ( u  e.  P.  /\  v  e. 
P. ) )  -> 
( u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
9998ralrimivva 2590 1  |-  ( ph  ->  A. u  e.  P.  A. v  e.  P.  (
u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   {crab 2490    C_ wss 3174   <.cop 3646   class class class wbr 4059    X. cxp 4691  (class class class)co 5967   [cec 6641   /.cqs 6642   P.cnp 7439   1Pc1p 7440    <P cltp 7443    ~R cer 7444   R.cnr 7445   -1Rcm1r 7448    +R cplr 7449    <R cltr 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-imp 7617  df-iltp 7618  df-enr 7874  df-nr 7875  df-plr 7876  df-mr 7877  df-ltr 7878  df-0r 7879  df-1r 7880  df-m1r 7881
This theorem is referenced by:  suplocsrlempr  7955
  Copyright terms: Public domain W3C validator