Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bnd2 | Unicode version |
Description: A variant of the Boundedness Axiom bnd 4158 that picks a subset out of a possibly proper class in which a property is true. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
bnd2.1 |
Ref | Expression |
---|---|
bnd2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2454 | . . . 4 | |
2 | 1 | ralbii 2476 | . . 3 |
3 | bnd2.1 | . . . 4 | |
4 | raleq 2665 | . . . . 5 | |
5 | raleq 2665 | . . . . . 6 | |
6 | 5 | exbidv 1818 | . . . . 5 |
7 | 4, 6 | imbi12d 233 | . . . 4 |
8 | bnd 4158 | . . . 4 | |
9 | 3, 7, 8 | vtocl 2784 | . . 3 |
10 | 2, 9 | sylbi 120 | . 2 |
11 | vex 2733 | . . . . 5 | |
12 | 11 | inex1 4123 | . . . 4 |
13 | inss2 3348 | . . . . . . 7 | |
14 | sseq1 3170 | . . . . . . 7 | |
15 | 13, 14 | mpbiri 167 | . . . . . 6 |
16 | 15 | biantrurd 303 | . . . . 5 |
17 | rexeq 2666 | . . . . . . 7 | |
18 | elin 3310 | . . . . . . . . . 10 | |
19 | 18 | anbi1i 455 | . . . . . . . . 9 |
20 | anass 399 | . . . . . . . . 9 | |
21 | 19, 20 | bitri 183 | . . . . . . . 8 |
22 | 21 | rexbii2 2481 | . . . . . . 7 |
23 | 17, 22 | bitrdi 195 | . . . . . 6 |
24 | 23 | ralbidv 2470 | . . . . 5 |
25 | 16, 24 | bitr3d 189 | . . . 4 |
26 | 12, 25 | spcev 2825 | . . 3 |
27 | 26 | exlimiv 1591 | . 2 |
28 | 10, 27 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 cvv 2730 cin 3120 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-coll 4104 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |