Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bnd2 | Unicode version |
Description: A variant of the Boundedness Axiom bnd 4133 that picks a subset out of a possibly proper class in which a property is true. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
bnd2.1 |
Ref | Expression |
---|---|
bnd2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2441 | . . . 4 | |
2 | 1 | ralbii 2463 | . . 3 |
3 | bnd2.1 | . . . 4 | |
4 | raleq 2652 | . . . . 5 | |
5 | raleq 2652 | . . . . . 6 | |
6 | 5 | exbidv 1805 | . . . . 5 |
7 | 4, 6 | imbi12d 233 | . . . 4 |
8 | bnd 4133 | . . . 4 | |
9 | 3, 7, 8 | vtocl 2766 | . . 3 |
10 | 2, 9 | sylbi 120 | . 2 |
11 | vex 2715 | . . . . 5 | |
12 | 11 | inex1 4098 | . . . 4 |
13 | inss2 3328 | . . . . . . 7 | |
14 | sseq1 3151 | . . . . . . 7 | |
15 | 13, 14 | mpbiri 167 | . . . . . 6 |
16 | 15 | biantrurd 303 | . . . . 5 |
17 | rexeq 2653 | . . . . . . 7 | |
18 | elin 3290 | . . . . . . . . . 10 | |
19 | 18 | anbi1i 454 | . . . . . . . . 9 |
20 | anass 399 | . . . . . . . . 9 | |
21 | 19, 20 | bitri 183 | . . . . . . . 8 |
22 | 21 | rexbii2 2468 | . . . . . . 7 |
23 | 17, 22 | bitrdi 195 | . . . . . 6 |
24 | 23 | ralbidv 2457 | . . . . 5 |
25 | 16, 24 | bitr3d 189 | . . . 4 |
26 | 12, 25 | spcev 2807 | . . 3 |
27 | 26 | exlimiv 1578 | . 2 |
28 | 10, 27 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wex 1472 wcel 2128 wral 2435 wrex 2436 cvv 2712 cin 3101 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-coll 4079 ax-sep 4082 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-in 3108 df-ss 3115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |