| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bnd2 | Unicode version | ||
| Description: A variant of the
Boundedness Axiom bnd 4256 that picks a subset |
| Ref | Expression |
|---|---|
| bnd2.1 |
|
| Ref | Expression |
|---|---|
| bnd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2514 |
. . . 4
| |
| 2 | 1 | ralbii 2536 |
. . 3
|
| 3 | bnd2.1 |
. . . 4
| |
| 4 | raleq 2728 |
. . . . 5
| |
| 5 | raleq 2728 |
. . . . . 6
| |
| 6 | 5 | exbidv 1871 |
. . . . 5
|
| 7 | 4, 6 | imbi12d 234 |
. . . 4
|
| 8 | bnd 4256 |
. . . 4
| |
| 9 | 3, 7, 8 | vtocl 2855 |
. . 3
|
| 10 | 2, 9 | sylbi 121 |
. 2
|
| 11 | vex 2802 |
. . . . 5
| |
| 12 | 11 | inex1 4218 |
. . . 4
|
| 13 | inss2 3425 |
. . . . . . 7
| |
| 14 | sseq1 3247 |
. . . . . . 7
| |
| 15 | 13, 14 | mpbiri 168 |
. . . . . 6
|
| 16 | 15 | biantrurd 305 |
. . . . 5
|
| 17 | rexeq 2729 |
. . . . . . 7
| |
| 18 | elin 3387 |
. . . . . . . . . 10
| |
| 19 | 18 | anbi1i 458 |
. . . . . . . . 9
|
| 20 | anass 401 |
. . . . . . . . 9
| |
| 21 | 19, 20 | bitri 184 |
. . . . . . . 8
|
| 22 | 21 | rexbii2 2541 |
. . . . . . 7
|
| 23 | 17, 22 | bitrdi 196 |
. . . . . 6
|
| 24 | 23 | ralbidv 2530 |
. . . . 5
|
| 25 | 16, 24 | bitr3d 190 |
. . . 4
|
| 26 | 12, 25 | spcev 2898 |
. . 3
|
| 27 | 26 | exlimiv 1644 |
. 2
|
| 28 | 10, 27 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-coll 4199 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |