ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexuz2 Unicode version

Theorem rexuz2 9519
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
rexuz2  |-  ( E. n  e.  ( ZZ>= `  M ) ph  <->  ( M  e.  ZZ  /\  E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
Distinct variable group:    n, M
Allowed substitution hint:    ph( n)

Proof of Theorem rexuz2
StepHypRef Expression
1 eluz2 9472 . . . . . 6  |-  ( n  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  n  e.  ZZ  /\  M  <_  n ) )
2 df-3an 970 . . . . . 6  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ  /\  M  <_  n )  <->  ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  M  <_  n ) )
31, 2bitri 183 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  <->  ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  M  <_  n ) )
43anbi1i 454 . . . 4  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph ) 
<->  ( ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  M  <_  n )  /\  ph ) )
5 anass 399 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  M  <_  n )  /\  ph ) 
<->  ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  ( M  <_  n  /\  ph ) ) )
6 anass 399 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  ( M  <_  n  /\  ph ) )  <-> 
( M  e.  ZZ  /\  ( n  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) ) )
7 an12 551 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) )  <-> 
( n  e.  ZZ  /\  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) ) )
86, 7bitri 183 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  ( M  <_  n  /\  ph ) )  <-> 
( n  e.  ZZ  /\  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) ) )
95, 8bitri 183 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  M  <_  n )  /\  ph ) 
<->  ( n  e.  ZZ  /\  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) ) )
104, 9bitri 183 . . 3  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph ) 
<->  ( n  e.  ZZ  /\  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) ) )
1110rexbii2 2477 . 2  |-  ( E. n  e.  ( ZZ>= `  M ) ph  <->  E. n  e.  ZZ  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) )
12 r19.42v 2623 . 2  |-  ( E. n  e.  ZZ  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) )  <->  ( M  e.  ZZ  /\  E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
1311, 12bitri 183 1  |-  ( E. n  e.  ( ZZ>= `  M ) ph  <->  ( M  e.  ZZ  /\  E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   E.wrex 2445   class class class wbr 3982   ` cfv 5188    <_ cle 7934   ZZcz 9191   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-neg 8072  df-z 9192  df-uz 9467
This theorem is referenced by:  2rexuz  9520
  Copyright terms: Public domain W3C validator