ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrp Unicode version

Theorem rexrp 9872
Description: Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
rexrp  |-  ( E. x  e.  RR+  ph  <->  E. x  e.  RR  ( 0  < 
x  /\  ph ) )

Proof of Theorem rexrp
StepHypRef Expression
1 elrp 9851 . . . 4  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
21anbi1i 458 . . 3  |-  ( ( x  e.  RR+  /\  ph ) 
<->  ( ( x  e.  RR  /\  0  < 
x )  /\  ph ) )
3 anass 401 . . 3  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ph )  <->  ( x  e.  RR  /\  ( 0  <  x  /\  ph ) ) )
42, 3bitri 184 . 2  |-  ( ( x  e.  RR+  /\  ph ) 
<->  ( x  e.  RR  /\  ( 0  <  x  /\  ph ) ) )
54rexbii2 2541 1  |-  ( E. x  e.  RR+  ph  <->  E. x  e.  RR  ( 0  < 
x  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   E.wrex 2509   class class class wbr 4083   RRcr 7998   0cc0 7999    < clt 8181   RR+crp 9849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-rp 9850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator