Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemeq Unicode version

Theorem nninfsellemeq 15658
Description: Lemma for nninfsel 15661. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
nninfsel.q  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
nninfsel.1  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  1o )
nninfsel.n  |-  ( ph  ->  N  e.  om )
nninfsel.qk  |-  ( ph  ->  A. k  e.  N  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
nninfsel.qn  |-  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  (/) )
Assertion
Ref Expression
nninfsellemeq  |-  ( ph  ->  ( E `  Q
)  =  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
Distinct variable groups:    i, N, k, n    Q, n, k, q    ph, i, n    i, q
Allowed substitution hints:    ph( k, q)    Q( i)    E( i, k, n, q)    N( q)

Proof of Theorem nninfsellemeq
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . . . . 5  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
21nninfself 15657 . . . 4  |-  E :
( 2o  ^m ) -->
32a1i 9 . . 3  |-  ( ph  ->  E : ( 2o 
^m )
--> )
4 nninfsel.q . . 3  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
53, 4ffvelcdmd 5698 . 2  |-  ( ph  ->  ( E `  Q
)  e. )
6 nninfsel.n . 2  |-  ( ph  ->  N  e.  om )
7 fveq1 5557 . . . . . . . . . . 11  |-  ( q  =  Q  ->  (
q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) ) )
87eqeq1d 2205 . . . . . . . . . 10  |-  ( q  =  Q  ->  (
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
98ralbidv 2497 . . . . . . . . 9  |-  ( q  =  Q  ->  ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
109ifbid 3582 . . . . . . . 8  |-  ( q  =  Q  ->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
1110mpteq2dv 4124 . . . . . . 7  |-  ( q  =  Q  ->  (
n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
12 omex 4629 . . . . . . . 8  |-  om  e.  _V
1312mptex 5788 . . . . . . 7  |-  ( n  e.  om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  _V
1411, 1, 13fvmpt 5638 . . . . . 6  |-  ( Q  e.  ( 2o  ^m )  -> 
( E `  Q
)  =  ( n  e.  om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
154, 14syl 14 . . . . 5  |-  ( ph  ->  ( E `  Q
)  =  ( n  e.  om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
1615adantr 276 . . . 4  |-  ( (
ph  /\  j  e.  N )  ->  ( E `  Q )  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
17 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  n  =  j )
18 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  -> 
j  e.  N )
1917, 18eqeltrd 2273 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  n  e.  N )
20 nnord 4648 . . . . . . . . 9  |-  ( N  e.  om  ->  Ord  N )
21 vex 2766 . . . . . . . . . 10  |-  n  e. 
_V
22 ordelsuc 4541 . . . . . . . . . 10  |-  ( ( n  e.  _V  /\  Ord  N )  ->  (
n  e.  N  <->  suc  n  C_  N ) )
2321, 22mpan 424 . . . . . . . . 9  |-  ( Ord 
N  ->  ( n  e.  N  <->  suc  n  C_  N
) )
246, 20, 233syl 17 . . . . . . . 8  |-  ( ph  ->  ( n  e.  N  <->  suc  n  C_  N )
)
2524ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  -> 
( n  e.  N  <->  suc  n  C_  N )
)
2619, 25mpbid 147 . . . . . 6  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  suc  n  C_  N )
27 nninfsel.qk . . . . . . 7  |-  ( ph  ->  A. k  e.  N  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
2827ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  A. k  e.  N  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
29 ssralv 3247 . . . . . 6  |-  ( suc  n  C_  N  ->  ( A. k  e.  N  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  A. k  e.  suc  n
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
3026, 28, 29sylc 62 . . . . 5  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
3130iftrued 3568 . . . 4  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  if ( A. k  e. 
suc  n ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  1o )
32 simpr 110 . . . . 5  |-  ( (
ph  /\  j  e.  N )  ->  j  e.  N )
336adantr 276 . . . . 5  |-  ( (
ph  /\  j  e.  N )  ->  N  e.  om )
34 elnn 4642 . . . . 5  |-  ( ( j  e.  N  /\  N  e.  om )  ->  j  e.  om )
3532, 33, 34syl2anc 411 . . . 4  |-  ( (
ph  /\  j  e.  N )  ->  j  e.  om )
36 1onn 6578 . . . . 5  |-  1o  e.  om
3736a1i 9 . . . 4  |-  ( (
ph  /\  j  e.  N )  ->  1o  e.  om )
3816, 31, 35, 37fvmptd 5642 . . 3  |-  ( (
ph  /\  j  e.  N )  ->  (
( E `  Q
) `  j )  =  1o )
3938ralrimiva 2570 . 2  |-  ( ph  ->  A. j  e.  N  ( ( E `  Q ) `  j
)  =  1o )
4021sucid 4452 . . . . . . 7  |-  n  e. 
suc  n
4140a1i 9 . . . . . 6  |-  ( (
ph  /\  n  =  N )  ->  n  e.  suc  n )
42 1n0 6490 . . . . . . . 8  |-  1o  =/=  (/)
4342nesymi 2413 . . . . . . 7  |-  -.  (/)  =  1o
44 simpr 110 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  =  N )  ->  n  =  N )
4544eleq2d 2266 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  =  N )  ->  (
i  e.  n  <->  i  e.  N ) )
4645ifbid 3582 . . . . . . . . . . 11  |-  ( (
ph  /\  n  =  N )  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  N ,  1o ,  (/) ) )
4746mpteq2dv 4124 . . . . . . . . . 10  |-  ( (
ph  /\  n  =  N )  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
4847fveq2d 5562 . . . . . . . . 9  |-  ( (
ph  /\  n  =  N )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) ) )
49 nninfsel.qn . . . . . . . . . 10  |-  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  (/) )
5049adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  n  =  N )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  (/) )
5148, 50eqtrd 2229 . . . . . . . 8  |-  ( (
ph  /\  n  =  N )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  (/) )
5251eqeq1d 2205 . . . . . . 7  |-  ( (
ph  /\  n  =  N )  ->  (
( Q `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o  <->  (/)  =  1o ) )
5343, 52mtbiri 676 . . . . . 6  |-  ( (
ph  /\  n  =  N )  ->  -.  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
54 elequ2 2172 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
i  e.  k  <->  i  e.  n ) )
5554ifbid 3582 . . . . . . . . . . 11  |-  ( k  =  n  ->  if ( i  e.  k ,  1o ,  (/) )  =  if (
i  e.  n ,  1o ,  (/) ) )
5655mpteq2dv 4124 . . . . . . . . . 10  |-  ( k  =  n  ->  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) )  =  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
5756fveq2d 5562 . . . . . . . . 9  |-  ( k  =  n  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
5857eqeq1d 2205 . . . . . . . 8  |-  ( k  =  n  ->  (
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o ) )
5958notbid 668 . . . . . . 7  |-  ( k  =  n  ->  ( -.  ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  -.  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o ) )
6059rspcev 2868 . . . . . 6  |-  ( ( n  e.  suc  n  /\  -.  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )  ->  E. k  e.  suc  n  -.  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
6141, 53, 60syl2anc 411 . . . . 5  |-  ( (
ph  /\  n  =  N )  ->  E. k  e.  suc  n  -.  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
62 rexnalim 2486 . . . . 5  |-  ( E. k  e.  suc  n  -.  ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  -.  A. k  e.  suc  n ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
6361, 62syl 14 . . . 4  |-  ( (
ph  /\  n  =  N )  ->  -.  A. k  e.  suc  n
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
6463iffalsed 3571 . . 3  |-  ( (
ph  /\  n  =  N )  ->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  (/) )
65 peano1 4630 . . . 4  |-  (/)  e.  om
6665a1i 9 . . 3  |-  ( ph  -> 
(/)  e.  om )
6715, 64, 6, 66fvmptd 5642 . 2  |-  ( ph  ->  ( ( E `  Q ) `  N
)  =  (/) )
685, 6, 39, 67nnnninfeq 7194 1  |-  ( ph  ->  ( E `  Q
)  =  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763    C_ wss 3157   (/)c0 3450   ifcif 3561    |-> cmpt 4094   Ord word 4397   suc csuc 4400   omcom 4626   -->wf 5254   ` cfv 5258  (class class class)co 5922   1oc1o 6467   2oc2o 6468    ^m cmap 6707  ℕxnninf 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709  df-nninf 7186
This theorem is referenced by:  nninfsellemqall  15659
  Copyright terms: Public domain W3C validator