| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfsellemeq | Unicode version | ||
| Description: Lemma for nninfsel 15958. (Contributed by Jim Kingdon, 9-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfsel.e |
|
| nninfsel.q |
|
| nninfsel.1 |
|
| nninfsel.n |
|
| nninfsel.qk |
|
| nninfsel.qn |
|
| Ref | Expression |
|---|---|
| nninfsellemeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfsel.e |
. . . . 5
| |
| 2 | 1 | nninfself 15954 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | nninfsel.q |
. . 3
| |
| 5 | 3, 4 | ffvelcdmd 5716 |
. 2
|
| 6 | nninfsel.n |
. 2
| |
| 7 | fveq1 5575 |
. . . . . . . . . . 11
| |
| 8 | 7 | eqeq1d 2214 |
. . . . . . . . . 10
|
| 9 | 8 | ralbidv 2506 |
. . . . . . . . 9
|
| 10 | 9 | ifbid 3592 |
. . . . . . . 8
|
| 11 | 10 | mpteq2dv 4135 |
. . . . . . 7
|
| 12 | omex 4641 |
. . . . . . . 8
| |
| 13 | 12 | mptex 5810 |
. . . . . . 7
|
| 14 | 11, 1, 13 | fvmpt 5656 |
. . . . . 6
|
| 15 | 4, 14 | syl 14 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | simpr 110 |
. . . . . . . 8
| |
| 18 | simplr 528 |
. . . . . . . 8
| |
| 19 | 17, 18 | eqeltrd 2282 |
. . . . . . 7
|
| 20 | nnord 4660 |
. . . . . . . . 9
| |
| 21 | vex 2775 |
. . . . . . . . . 10
| |
| 22 | ordelsuc 4553 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | mpan 424 |
. . . . . . . . 9
|
| 24 | 6, 20, 23 | 3syl 17 |
. . . . . . . 8
|
| 25 | 24 | ad2antrr 488 |
. . . . . . 7
|
| 26 | 19, 25 | mpbid 147 |
. . . . . 6
|
| 27 | nninfsel.qk |
. . . . . . 7
| |
| 28 | 27 | ad2antrr 488 |
. . . . . 6
|
| 29 | ssralv 3257 |
. . . . . 6
| |
| 30 | 26, 28, 29 | sylc 62 |
. . . . 5
|
| 31 | 30 | iftrued 3578 |
. . . 4
|
| 32 | simpr 110 |
. . . . 5
| |
| 33 | 6 | adantr 276 |
. . . . 5
|
| 34 | elnn 4654 |
. . . . 5
| |
| 35 | 32, 33, 34 | syl2anc 411 |
. . . 4
|
| 36 | 1onn 6606 |
. . . . 5
| |
| 37 | 36 | a1i 9 |
. . . 4
|
| 38 | 16, 31, 35, 37 | fvmptd 5660 |
. . 3
|
| 39 | 38 | ralrimiva 2579 |
. 2
|
| 40 | 21 | sucid 4464 |
. . . . . . 7
|
| 41 | 40 | a1i 9 |
. . . . . 6
|
| 42 | 1n0 6518 |
. . . . . . . 8
| |
| 43 | 42 | nesymi 2422 |
. . . . . . 7
|
| 44 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 45 | 44 | eleq2d 2275 |
. . . . . . . . . . . 12
|
| 46 | 45 | ifbid 3592 |
. . . . . . . . . . 11
|
| 47 | 46 | mpteq2dv 4135 |
. . . . . . . . . 10
|
| 48 | 47 | fveq2d 5580 |
. . . . . . . . 9
|
| 49 | nninfsel.qn |
. . . . . . . . . 10
| |
| 50 | 49 | adantr 276 |
. . . . . . . . 9
|
| 51 | 48, 50 | eqtrd 2238 |
. . . . . . . 8
|
| 52 | 51 | eqeq1d 2214 |
. . . . . . 7
|
| 53 | 43, 52 | mtbiri 677 |
. . . . . 6
|
| 54 | elequ2 2181 |
. . . . . . . . . . . 12
| |
| 55 | 54 | ifbid 3592 |
. . . . . . . . . . 11
|
| 56 | 55 | mpteq2dv 4135 |
. . . . . . . . . 10
|
| 57 | 56 | fveq2d 5580 |
. . . . . . . . 9
|
| 58 | 57 | eqeq1d 2214 |
. . . . . . . 8
|
| 59 | 58 | notbid 669 |
. . . . . . 7
|
| 60 | 59 | rspcev 2877 |
. . . . . 6
|
| 61 | 41, 53, 60 | syl2anc 411 |
. . . . 5
|
| 62 | rexnalim 2495 |
. . . . 5
| |
| 63 | 61, 62 | syl 14 |
. . . 4
|
| 64 | 63 | iffalsed 3581 |
. . 3
|
| 65 | peano1 4642 |
. . . 4
| |
| 66 | 65 | a1i 9 |
. . 3
|
| 67 | 15, 64, 6, 66 | fvmptd 5660 |
. 2
|
| 68 | 5, 6, 39, 67 | nnnninfeq 7230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1o 6502 df-2o 6503 df-map 6737 df-nninf 7222 |
| This theorem is referenced by: nninfsellemqall 15956 |
| Copyright terms: Public domain | W3C validator |