| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfsellemeq | Unicode version | ||
| Description: Lemma for nninfsel 16383. (Contributed by Jim Kingdon, 9-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfsel.e |
|
| nninfsel.q |
|
| nninfsel.1 |
|
| nninfsel.n |
|
| nninfsel.qk |
|
| nninfsel.qn |
|
| Ref | Expression |
|---|---|
| nninfsellemeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfsel.e |
. . . . 5
| |
| 2 | 1 | nninfself 16379 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | nninfsel.q |
. . 3
| |
| 5 | 3, 4 | ffvelcdmd 5771 |
. 2
|
| 6 | nninfsel.n |
. 2
| |
| 7 | fveq1 5626 |
. . . . . . . . . . 11
| |
| 8 | 7 | eqeq1d 2238 |
. . . . . . . . . 10
|
| 9 | 8 | ralbidv 2530 |
. . . . . . . . 9
|
| 10 | 9 | ifbid 3624 |
. . . . . . . 8
|
| 11 | 10 | mpteq2dv 4175 |
. . . . . . 7
|
| 12 | omex 4685 |
. . . . . . . 8
| |
| 13 | 12 | mptex 5865 |
. . . . . . 7
|
| 14 | 11, 1, 13 | fvmpt 5711 |
. . . . . 6
|
| 15 | 4, 14 | syl 14 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | simpr 110 |
. . . . . . . 8
| |
| 18 | simplr 528 |
. . . . . . . 8
| |
| 19 | 17, 18 | eqeltrd 2306 |
. . . . . . 7
|
| 20 | nnord 4704 |
. . . . . . . . 9
| |
| 21 | vex 2802 |
. . . . . . . . . 10
| |
| 22 | ordelsuc 4597 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | mpan 424 |
. . . . . . . . 9
|
| 24 | 6, 20, 23 | 3syl 17 |
. . . . . . . 8
|
| 25 | 24 | ad2antrr 488 |
. . . . . . 7
|
| 26 | 19, 25 | mpbid 147 |
. . . . . 6
|
| 27 | nninfsel.qk |
. . . . . . 7
| |
| 28 | 27 | ad2antrr 488 |
. . . . . 6
|
| 29 | ssralv 3288 |
. . . . . 6
| |
| 30 | 26, 28, 29 | sylc 62 |
. . . . 5
|
| 31 | 30 | iftrued 3609 |
. . . 4
|
| 32 | simpr 110 |
. . . . 5
| |
| 33 | 6 | adantr 276 |
. . . . 5
|
| 34 | elnn 4698 |
. . . . 5
| |
| 35 | 32, 33, 34 | syl2anc 411 |
. . . 4
|
| 36 | 1onn 6666 |
. . . . 5
| |
| 37 | 36 | a1i 9 |
. . . 4
|
| 38 | 16, 31, 35, 37 | fvmptd 5715 |
. . 3
|
| 39 | 38 | ralrimiva 2603 |
. 2
|
| 40 | 21 | sucid 4508 |
. . . . . . 7
|
| 41 | 40 | a1i 9 |
. . . . . 6
|
| 42 | 1n0 6578 |
. . . . . . . 8
| |
| 43 | 42 | nesymi 2446 |
. . . . . . 7
|
| 44 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 45 | 44 | eleq2d 2299 |
. . . . . . . . . . . 12
|
| 46 | 45 | ifbid 3624 |
. . . . . . . . . . 11
|
| 47 | 46 | mpteq2dv 4175 |
. . . . . . . . . 10
|
| 48 | 47 | fveq2d 5631 |
. . . . . . . . 9
|
| 49 | nninfsel.qn |
. . . . . . . . . 10
| |
| 50 | 49 | adantr 276 |
. . . . . . . . 9
|
| 51 | 48, 50 | eqtrd 2262 |
. . . . . . . 8
|
| 52 | 51 | eqeq1d 2238 |
. . . . . . 7
|
| 53 | 43, 52 | mtbiri 679 |
. . . . . 6
|
| 54 | elequ2 2205 |
. . . . . . . . . . . 12
| |
| 55 | 54 | ifbid 3624 |
. . . . . . . . . . 11
|
| 56 | 55 | mpteq2dv 4175 |
. . . . . . . . . 10
|
| 57 | 56 | fveq2d 5631 |
. . . . . . . . 9
|
| 58 | 57 | eqeq1d 2238 |
. . . . . . . 8
|
| 59 | 58 | notbid 671 |
. . . . . . 7
|
| 60 | 59 | rspcev 2907 |
. . . . . 6
|
| 61 | 41, 53, 60 | syl2anc 411 |
. . . . 5
|
| 62 | rexnalim 2519 |
. . . . 5
| |
| 63 | 61, 62 | syl 14 |
. . . 4
|
| 64 | 63 | iffalsed 3612 |
. . 3
|
| 65 | peano1 4686 |
. . . 4
| |
| 66 | 65 | a1i 9 |
. . 3
|
| 67 | 15, 64, 6, 66 | fvmptd 5715 |
. 2
|
| 68 | 5, 6, 39, 67 | nnnninfeq 7295 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1o 6562 df-2o 6563 df-map 6797 df-nninf 7287 |
| This theorem is referenced by: nninfsellemqall 16381 |
| Copyright terms: Public domain | W3C validator |