ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alzdvds Unicode version

Theorem alzdvds 12360
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
alzdvds  |-  ( N  e.  ZZ  ->  ( A. x  e.  ZZ  x  ||  N  <->  N  = 
0 ) )
Distinct variable group:    x, N

Proof of Theorem alzdvds
StepHypRef Expression
1 nnssz 9459 . . . . . . . 8  |-  NN  C_  ZZ
2 zcn 9447 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
32abscld 11687 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
4 arch 9362 . . . . . . . . 9  |-  ( ( abs `  N )  e.  RR  ->  E. x  e.  NN  ( abs `  N
)  <  x )
53, 4syl 14 . . . . . . . 8  |-  ( N  e.  ZZ  ->  E. x  e.  NN  ( abs `  N
)  <  x )
6 ssrexv 3289 . . . . . . . 8  |-  ( NN  C_  ZZ  ->  ( E. x  e.  NN  ( abs `  N )  < 
x  ->  E. x  e.  ZZ  ( abs `  N
)  <  x )
)
71, 5, 6mpsyl 65 . . . . . . 7  |-  ( N  e.  ZZ  ->  E. x  e.  ZZ  ( abs `  N
)  <  x )
8 zabscl 11592 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
9 zltnle 9488 . . . . . . . . . 10  |-  ( ( ( abs `  N
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( abs `  N
)  <  x  <->  -.  x  <_  ( abs `  N
) ) )
108, 9sylan 283 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( abs `  N
)  <  x  <->  -.  x  <_  ( abs `  N
) ) )
1110rexbidva 2527 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( E. x  e.  ZZ  ( abs `  N )  <  x  <->  E. x  e.  ZZ  -.  x  <_ 
( abs `  N
) ) )
12 rexnalim 2519 . . . . . . . 8  |-  ( E. x  e.  ZZ  -.  x  <_  ( abs `  N
)  ->  -.  A. x  e.  ZZ  x  <_  ( abs `  N ) )
1311, 12biimtrdi 163 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( E. x  e.  ZZ  ( abs `  N )  <  x  ->  -.  A. x  e.  ZZ  x  <_  ( abs `  N
) ) )
147, 13mpd 13 . . . . . 6  |-  ( N  e.  ZZ  ->  -.  A. x  e.  ZZ  x  <_  ( abs `  N
) )
1514adantl 277 . . . . 5  |-  ( ( A. x  e.  ZZ  x  ||  N  /\  N  e.  ZZ )  ->  -.  A. x  e.  ZZ  x  <_  ( abs `  N
) )
16 ralim 2589 . . . . . . 7  |-  ( A. x  e.  ZZ  (
x  ||  N  ->  x  <_  ( abs `  N
) )  ->  ( A. x  e.  ZZ  x  ||  N  ->  A. x  e.  ZZ  x  <_  ( abs `  N ) ) )
17 dvdsleabs 12351 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
x  ||  N  ->  x  <_  ( abs `  N
) ) )
18173expb 1228 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( x  ||  N  ->  x  <_  ( abs `  N ) ) )
1918expcom 116 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( x  e.  ZZ  ->  ( x  ||  N  ->  x  <_  ( abs `  N ) ) ) )
2019ralrimiv 2602 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  ->  A. x  e.  ZZ  ( x  ||  N  ->  x  <_  ( abs `  N
) ) )
2116, 20syl11 31 . . . . . 6  |-  ( A. x  e.  ZZ  x  ||  N  ->  ( ( N  e.  ZZ  /\  N  =/=  0 )  ->  A. x  e.  ZZ  x  <_  ( abs `  N ) ) )
2221expdimp 259 . . . . 5  |-  ( ( A. x  e.  ZZ  x  ||  N  /\  N  e.  ZZ )  ->  ( N  =/=  0  ->  A. x  e.  ZZ  x  <_  ( abs `  N ) ) )
2315, 22mtod 667 . . . 4  |-  ( ( A. x  e.  ZZ  x  ||  N  /\  N  e.  ZZ )  ->  -.  N  =/=  0 )
24 0z 9453 . . . . . . 7  |-  0  e.  ZZ
25 zdceq 9518 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
2624, 25mpan2 425 . . . . . 6  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
27 nnedc 2405 . . . . . 6  |-  (DECID  N  =  0  ->  ( -.  N  =/=  0  <->  N  = 
0 ) )
2826, 27syl 14 . . . . 5  |-  ( N  e.  ZZ  ->  ( -.  N  =/=  0  <->  N  =  0 ) )
2928adantl 277 . . . 4  |-  ( ( A. x  e.  ZZ  x  ||  N  /\  N  e.  ZZ )  ->  ( -.  N  =/=  0  <->  N  =  0 ) )
3023, 29mpbid 147 . . 3  |-  ( ( A. x  e.  ZZ  x  ||  N  /\  N  e.  ZZ )  ->  N  =  0 )
3130expcom 116 . 2  |-  ( N  e.  ZZ  ->  ( A. x  e.  ZZ  x  ||  N  ->  N  =  0 ) )
32 dvds0 12312 . . . 4  |-  ( x  e.  ZZ  ->  x  ||  0 )
33 breq2 4086 . . . 4  |-  ( N  =  0  ->  (
x  ||  N  <->  x  ||  0
) )
3432, 33imbitrrid 156 . . 3  |-  ( N  =  0  ->  (
x  e.  ZZ  ->  x 
||  N ) )
3534ralrimiv 2602 . 2  |-  ( N  =  0  ->  A. x  e.  ZZ  x  ||  N
)
3631, 35impbid1 142 1  |-  ( N  e.  ZZ  ->  ( A. x  e.  ZZ  x  ||  N  <->  N  = 
0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   E.wrex 2509    C_ wss 3197   class class class wbr 4082   ` cfv 5317   RRcr 7994   0cc0 7995    < clt 8177    <_ cle 8178   NNcn 9106   ZZcz 9442   abscabs 11503    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator