ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alzdvds Unicode version

Theorem alzdvds 12019
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
alzdvds  |-  ( N  e.  ZZ  ->  ( A. x  e.  ZZ  x  ||  N  <->  N  = 
0 ) )
Distinct variable group:    x, N

Proof of Theorem alzdvds
StepHypRef Expression
1 nnssz 9343 . . . . . . . 8  |-  NN  C_  ZZ
2 zcn 9331 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
32abscld 11346 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
4 arch 9246 . . . . . . . . 9  |-  ( ( abs `  N )  e.  RR  ->  E. x  e.  NN  ( abs `  N
)  <  x )
53, 4syl 14 . . . . . . . 8  |-  ( N  e.  ZZ  ->  E. x  e.  NN  ( abs `  N
)  <  x )
6 ssrexv 3248 . . . . . . . 8  |-  ( NN  C_  ZZ  ->  ( E. x  e.  NN  ( abs `  N )  < 
x  ->  E. x  e.  ZZ  ( abs `  N
)  <  x )
)
71, 5, 6mpsyl 65 . . . . . . 7  |-  ( N  e.  ZZ  ->  E. x  e.  ZZ  ( abs `  N
)  <  x )
8 zabscl 11251 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
9 zltnle 9372 . . . . . . . . . 10  |-  ( ( ( abs `  N
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( abs `  N
)  <  x  <->  -.  x  <_  ( abs `  N
) ) )
108, 9sylan 283 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( abs `  N
)  <  x  <->  -.  x  <_  ( abs `  N
) ) )
1110rexbidva 2494 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( E. x  e.  ZZ  ( abs `  N )  <  x  <->  E. x  e.  ZZ  -.  x  <_ 
( abs `  N
) ) )
12 rexnalim 2486 . . . . . . . 8  |-  ( E. x  e.  ZZ  -.  x  <_  ( abs `  N
)  ->  -.  A. x  e.  ZZ  x  <_  ( abs `  N ) )
1311, 12biimtrdi 163 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( E. x  e.  ZZ  ( abs `  N )  <  x  ->  -.  A. x  e.  ZZ  x  <_  ( abs `  N
) ) )
147, 13mpd 13 . . . . . 6  |-  ( N  e.  ZZ  ->  -.  A. x  e.  ZZ  x  <_  ( abs `  N
) )
1514adantl 277 . . . . 5  |-  ( ( A. x  e.  ZZ  x  ||  N  /\  N  e.  ZZ )  ->  -.  A. x  e.  ZZ  x  <_  ( abs `  N
) )
16 ralim 2556 . . . . . . 7  |-  ( A. x  e.  ZZ  (
x  ||  N  ->  x  <_  ( abs `  N
) )  ->  ( A. x  e.  ZZ  x  ||  N  ->  A. x  e.  ZZ  x  <_  ( abs `  N ) ) )
17 dvdsleabs 12010 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
x  ||  N  ->  x  <_  ( abs `  N
) ) )
18173expb 1206 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( x  ||  N  ->  x  <_  ( abs `  N ) ) )
1918expcom 116 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( x  e.  ZZ  ->  ( x  ||  N  ->  x  <_  ( abs `  N ) ) ) )
2019ralrimiv 2569 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  ->  A. x  e.  ZZ  ( x  ||  N  ->  x  <_  ( abs `  N
) ) )
2116, 20syl11 31 . . . . . 6  |-  ( A. x  e.  ZZ  x  ||  N  ->  ( ( N  e.  ZZ  /\  N  =/=  0 )  ->  A. x  e.  ZZ  x  <_  ( abs `  N ) ) )
2221expdimp 259 . . . . 5  |-  ( ( A. x  e.  ZZ  x  ||  N  /\  N  e.  ZZ )  ->  ( N  =/=  0  ->  A. x  e.  ZZ  x  <_  ( abs `  N ) ) )
2315, 22mtod 664 . . . 4  |-  ( ( A. x  e.  ZZ  x  ||  N  /\  N  e.  ZZ )  ->  -.  N  =/=  0 )
24 0z 9337 . . . . . . 7  |-  0  e.  ZZ
25 zdceq 9401 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
2624, 25mpan2 425 . . . . . 6  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
27 nnedc 2372 . . . . . 6  |-  (DECID  N  =  0  ->  ( -.  N  =/=  0  <->  N  = 
0 ) )
2826, 27syl 14 . . . . 5  |-  ( N  e.  ZZ  ->  ( -.  N  =/=  0  <->  N  =  0 ) )
2928adantl 277 . . . 4  |-  ( ( A. x  e.  ZZ  x  ||  N  /\  N  e.  ZZ )  ->  ( -.  N  =/=  0  <->  N  =  0 ) )
3023, 29mpbid 147 . . 3  |-  ( ( A. x  e.  ZZ  x  ||  N  /\  N  e.  ZZ )  ->  N  =  0 )
3130expcom 116 . 2  |-  ( N  e.  ZZ  ->  ( A. x  e.  ZZ  x  ||  N  ->  N  =  0 ) )
32 dvds0 11971 . . . 4  |-  ( x  e.  ZZ  ->  x  ||  0 )
33 breq2 4037 . . . 4  |-  ( N  =  0  ->  (
x  ||  N  <->  x  ||  0
) )
3432, 33imbitrrid 156 . . 3  |-  ( N  =  0  ->  (
x  e.  ZZ  ->  x 
||  N ) )
3534ralrimiv 2569 . 2  |-  ( N  =  0  ->  A. x  e.  ZZ  x  ||  N
)
3631, 35impbid1 142 1  |-  ( N  e.  ZZ  ->  ( A. x  e.  ZZ  x  ||  N  <->  N  = 
0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4033   ` cfv 5258   RRcr 7878   0cc0 7879    < clt 8061    <_ cle 8062   NNcn 8990   ZZcz 9326   abscabs 11162    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator