| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isnsgrp | Unicode version | ||
| Description: A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.) |
| Ref | Expression |
|---|---|
| issgrpn0.b |
|
| issgrpn0.o |
|
| Ref | Expression |
|---|---|
| isnsgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1003 |
. . . . . . 7
| |
| 2 | oveq1 5951 |
. . . . . . . . . . . . 13
| |
| 3 | 2 | oveq1d 5959 |
. . . . . . . . . . . 12
|
| 4 | oveq1 5951 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | eqeq12d 2220 |
. . . . . . . . . . 11
|
| 6 | 5 | notbid 669 |
. . . . . . . . . 10
|
| 7 | 6 | rexbidv 2507 |
. . . . . . . . 9
|
| 8 | 7 | rexbidv 2507 |
. . . . . . . 8
|
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | simpl2 1004 |
. . . . . . . 8
| |
| 11 | oveq2 5952 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | oveq1d 5959 |
. . . . . . . . . . . 12
|
| 13 | oveq1 5951 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | oveq2d 5960 |
. . . . . . . . . . . 12
|
| 15 | 12, 14 | eqeq12d 2220 |
. . . . . . . . . . 11
|
| 16 | 15 | notbid 669 |
. . . . . . . . . 10
|
| 17 | 16 | adantl 277 |
. . . . . . . . 9
|
| 18 | 17 | rexbidv 2507 |
. . . . . . . 8
|
| 19 | simpl3 1005 |
. . . . . . . . 9
| |
| 20 | oveq2 5952 |
. . . . . . . . . . . 12
| |
| 21 | oveq2 5952 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | oveq2d 5960 |
. . . . . . . . . . . 12
|
| 23 | 20, 22 | eqeq12d 2220 |
. . . . . . . . . . 11
|
| 24 | 23 | notbid 669 |
. . . . . . . . . 10
|
| 25 | 24 | adantl 277 |
. . . . . . . . 9
|
| 26 | neneq 2398 |
. . . . . . . . . 10
| |
| 27 | 26 | adantl 277 |
. . . . . . . . 9
|
| 28 | 19, 25, 27 | rspcedvd 2883 |
. . . . . . . 8
|
| 29 | 10, 18, 28 | rspcedvd 2883 |
. . . . . . 7
|
| 30 | 1, 9, 29 | rspcedvd 2883 |
. . . . . 6
|
| 31 | rexnalim 2495 |
. . . . . . . . 9
| |
| 32 | 31 | reximi 2603 |
. . . . . . . 8
|
| 33 | rexnalim 2495 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl 14 |
. . . . . . 7
|
| 35 | 34 | reximi 2603 |
. . . . . 6
|
| 36 | rexnalim 2495 |
. . . . . 6
| |
| 37 | 30, 35, 36 | 3syl 17 |
. . . . 5
|
| 38 | 37 | intnand 933 |
. . . 4
|
| 39 | issgrpn0.b |
. . . . 5
| |
| 40 | issgrpn0.o |
. . . . 5
| |
| 41 | 39, 40 | issgrp 13235 |
. . . 4
|
| 42 | 38, 41 | sylnibr 679 |
. . 3
|
| 43 | df-nel 2472 |
. . 3
| |
| 44 | 42, 43 | sylibr 134 |
. 2
|
| 45 | 44 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-sgrp 13234 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |