Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isnsgrp | Unicode version |
Description: A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.) |
Ref | Expression |
---|---|
issgrpn0.b | |
issgrpn0.o |
Ref | Expression |
---|---|
isnsgrp | Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 990 | . . . . . . 7 | |
2 | oveq1 5849 | . . . . . . . . . . . . 13 | |
3 | 2 | oveq1d 5857 | . . . . . . . . . . . 12 |
4 | oveq1 5849 | . . . . . . . . . . . 12 | |
5 | 3, 4 | eqeq12d 2180 | . . . . . . . . . . 11 |
6 | 5 | notbid 657 | . . . . . . . . . 10 |
7 | 6 | rexbidv 2467 | . . . . . . . . 9 |
8 | 7 | rexbidv 2467 | . . . . . . . 8 |
9 | 8 | adantl 275 | . . . . . . 7 |
10 | simpl2 991 | . . . . . . . 8 | |
11 | oveq2 5850 | . . . . . . . . . . . . 13 | |
12 | 11 | oveq1d 5857 | . . . . . . . . . . . 12 |
13 | oveq1 5849 | . . . . . . . . . . . . 13 | |
14 | 13 | oveq2d 5858 | . . . . . . . . . . . 12 |
15 | 12, 14 | eqeq12d 2180 | . . . . . . . . . . 11 |
16 | 15 | notbid 657 | . . . . . . . . . 10 |
17 | 16 | adantl 275 | . . . . . . . . 9 |
18 | 17 | rexbidv 2467 | . . . . . . . 8 |
19 | simpl3 992 | . . . . . . . . 9 | |
20 | oveq2 5850 | . . . . . . . . . . . 12 | |
21 | oveq2 5850 | . . . . . . . . . . . . 13 | |
22 | 21 | oveq2d 5858 | . . . . . . . . . . . 12 |
23 | 20, 22 | eqeq12d 2180 | . . . . . . . . . . 11 |
24 | 23 | notbid 657 | . . . . . . . . . 10 |
25 | 24 | adantl 275 | . . . . . . . . 9 |
26 | neneq 2358 | . . . . . . . . . 10 | |
27 | 26 | adantl 275 | . . . . . . . . 9 |
28 | 19, 25, 27 | rspcedvd 2836 | . . . . . . . 8 |
29 | 10, 18, 28 | rspcedvd 2836 | . . . . . . 7 |
30 | 1, 9, 29 | rspcedvd 2836 | . . . . . 6 |
31 | rexnalim 2455 | . . . . . . . . 9 | |
32 | 31 | reximi 2563 | . . . . . . . 8 |
33 | rexnalim 2455 | . . . . . . . 8 | |
34 | 32, 33 | syl 14 | . . . . . . 7 |
35 | 34 | reximi 2563 | . . . . . 6 |
36 | rexnalim 2455 | . . . . . 6 | |
37 | 30, 35, 36 | 3syl 17 | . . . . 5 |
38 | 37 | intnand 921 | . . . 4 Mgm |
39 | issgrpn0.b | . . . . 5 | |
40 | issgrpn0.o | . . . . 5 | |
41 | 39, 40 | issgrp 12621 | . . . 4 Smgrp Mgm |
42 | 38, 41 | sylnibr 667 | . . 3 Smgrp |
43 | df-nel 2432 | . . 3 Smgrp Smgrp | |
44 | 42, 43 | sylibr 133 | . 2 Smgrp |
45 | 44 | ex 114 | 1 Smgrp |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wne 2336 wnel 2431 wral 2444 wrex 2445 cfv 5188 (class class class)co 5842 cbs 12394 cplusg 12457 Mgmcmgm 12585 Smgrpcsgrp 12619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-sgrp 12620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |