| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isnsgrp | Unicode version | ||
| Description: A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.) |
| Ref | Expression |
|---|---|
| issgrpn0.b |
|
| issgrpn0.o |
|
| Ref | Expression |
|---|---|
| isnsgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1003 |
. . . . . . 7
| |
| 2 | oveq1 5974 |
. . . . . . . . . . . . 13
| |
| 3 | 2 | oveq1d 5982 |
. . . . . . . . . . . 12
|
| 4 | oveq1 5974 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | eqeq12d 2222 |
. . . . . . . . . . 11
|
| 6 | 5 | notbid 669 |
. . . . . . . . . 10
|
| 7 | 6 | rexbidv 2509 |
. . . . . . . . 9
|
| 8 | 7 | rexbidv 2509 |
. . . . . . . 8
|
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | simpl2 1004 |
. . . . . . . 8
| |
| 11 | oveq2 5975 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | oveq1d 5982 |
. . . . . . . . . . . 12
|
| 13 | oveq1 5974 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | oveq2d 5983 |
. . . . . . . . . . . 12
|
| 15 | 12, 14 | eqeq12d 2222 |
. . . . . . . . . . 11
|
| 16 | 15 | notbid 669 |
. . . . . . . . . 10
|
| 17 | 16 | adantl 277 |
. . . . . . . . 9
|
| 18 | 17 | rexbidv 2509 |
. . . . . . . 8
|
| 19 | simpl3 1005 |
. . . . . . . . 9
| |
| 20 | oveq2 5975 |
. . . . . . . . . . . 12
| |
| 21 | oveq2 5975 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | oveq2d 5983 |
. . . . . . . . . . . 12
|
| 23 | 20, 22 | eqeq12d 2222 |
. . . . . . . . . . 11
|
| 24 | 23 | notbid 669 |
. . . . . . . . . 10
|
| 25 | 24 | adantl 277 |
. . . . . . . . 9
|
| 26 | neneq 2400 |
. . . . . . . . . 10
| |
| 27 | 26 | adantl 277 |
. . . . . . . . 9
|
| 28 | 19, 25, 27 | rspcedvd 2890 |
. . . . . . . 8
|
| 29 | 10, 18, 28 | rspcedvd 2890 |
. . . . . . 7
|
| 30 | 1, 9, 29 | rspcedvd 2890 |
. . . . . 6
|
| 31 | rexnalim 2497 |
. . . . . . . . 9
| |
| 32 | 31 | reximi 2605 |
. . . . . . . 8
|
| 33 | rexnalim 2497 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl 14 |
. . . . . . 7
|
| 35 | 34 | reximi 2605 |
. . . . . 6
|
| 36 | rexnalim 2497 |
. . . . . 6
| |
| 37 | 30, 35, 36 | 3syl 17 |
. . . . 5
|
| 38 | 37 | intnand 933 |
. . . 4
|
| 39 | issgrpn0.b |
. . . . 5
| |
| 40 | issgrpn0.o |
. . . . 5
| |
| 41 | 39, 40 | issgrp 13350 |
. . . 4
|
| 42 | 38, 41 | sylnibr 679 |
. . 3
|
| 43 | df-nel 2474 |
. . 3
| |
| 44 | 42, 43 | sylibr 134 |
. 2
|
| 45 | 44 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-sgrp 13349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |