Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isnsgrp | Unicode version |
Description: A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.) |
Ref | Expression |
---|---|
issgrpn0.b | |
issgrpn0.o |
Ref | Expression |
---|---|
isnsgrp | Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 995 | . . . . . . 7 | |
2 | oveq1 5860 | . . . . . . . . . . . . 13 | |
3 | 2 | oveq1d 5868 | . . . . . . . . . . . 12 |
4 | oveq1 5860 | . . . . . . . . . . . 12 | |
5 | 3, 4 | eqeq12d 2185 | . . . . . . . . . . 11 |
6 | 5 | notbid 662 | . . . . . . . . . 10 |
7 | 6 | rexbidv 2471 | . . . . . . . . 9 |
8 | 7 | rexbidv 2471 | . . . . . . . 8 |
9 | 8 | adantl 275 | . . . . . . 7 |
10 | simpl2 996 | . . . . . . . 8 | |
11 | oveq2 5861 | . . . . . . . . . . . . 13 | |
12 | 11 | oveq1d 5868 | . . . . . . . . . . . 12 |
13 | oveq1 5860 | . . . . . . . . . . . . 13 | |
14 | 13 | oveq2d 5869 | . . . . . . . . . . . 12 |
15 | 12, 14 | eqeq12d 2185 | . . . . . . . . . . 11 |
16 | 15 | notbid 662 | . . . . . . . . . 10 |
17 | 16 | adantl 275 | . . . . . . . . 9 |
18 | 17 | rexbidv 2471 | . . . . . . . 8 |
19 | simpl3 997 | . . . . . . . . 9 | |
20 | oveq2 5861 | . . . . . . . . . . . 12 | |
21 | oveq2 5861 | . . . . . . . . . . . . 13 | |
22 | 21 | oveq2d 5869 | . . . . . . . . . . . 12 |
23 | 20, 22 | eqeq12d 2185 | . . . . . . . . . . 11 |
24 | 23 | notbid 662 | . . . . . . . . . 10 |
25 | 24 | adantl 275 | . . . . . . . . 9 |
26 | neneq 2362 | . . . . . . . . . 10 | |
27 | 26 | adantl 275 | . . . . . . . . 9 |
28 | 19, 25, 27 | rspcedvd 2840 | . . . . . . . 8 |
29 | 10, 18, 28 | rspcedvd 2840 | . . . . . . 7 |
30 | 1, 9, 29 | rspcedvd 2840 | . . . . . 6 |
31 | rexnalim 2459 | . . . . . . . . 9 | |
32 | 31 | reximi 2567 | . . . . . . . 8 |
33 | rexnalim 2459 | . . . . . . . 8 | |
34 | 32, 33 | syl 14 | . . . . . . 7 |
35 | 34 | reximi 2567 | . . . . . 6 |
36 | rexnalim 2459 | . . . . . 6 | |
37 | 30, 35, 36 | 3syl 17 | . . . . 5 |
38 | 37 | intnand 926 | . . . 4 Mgm |
39 | issgrpn0.b | . . . . 5 | |
40 | issgrpn0.o | . . . . 5 | |
41 | 39, 40 | issgrp 12644 | . . . 4 Smgrp Mgm |
42 | 38, 41 | sylnibr 672 | . . 3 Smgrp |
43 | df-nel 2436 | . . 3 Smgrp Smgrp | |
44 | 42, 43 | sylibr 133 | . 2 Smgrp |
45 | 44 | ex 114 | 1 Smgrp |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wne 2340 wnel 2435 wral 2448 wrex 2449 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 Mgmcmgm 12608 Smgrpcsgrp 12642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-sgrp 12643 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |