ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsgrp Unicode version

Theorem isnsgrp 12704
Description: A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.)
Hypotheses
Ref Expression
issgrpn0.b  |-  B  =  ( Base `  M
)
issgrpn0.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
isnsgrp  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) )  ->  M  e/ Smgrp ) )

Proof of Theorem isnsgrp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1000 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  X  e.  B
)
2 oveq1 5876 . . . . . . . . . . . . 13  |-  ( x  =  X  ->  (
x  .o.  y )  =  ( X  .o.  y ) )
32oveq1d 5884 . . . . . . . . . . . 12  |-  ( x  =  X  ->  (
( x  .o.  y
)  .o.  z )  =  ( ( X  .o.  y )  .o.  z ) )
4 oveq1 5876 . . . . . . . . . . . 12  |-  ( x  =  X  ->  (
x  .o.  ( y  .o.  z ) )  =  ( X  .o.  (
y  .o.  z )
) )
53, 4eqeq12d 2192 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  ( ( X  .o.  y )  .o.  z )  =  ( X  .o.  ( y  .o.  z ) ) ) )
65notbid 667 . . . . . . . . . 10  |-  ( x  =  X  ->  ( -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  -.  (
( X  .o.  y
)  .o.  z )  =  ( X  .o.  ( y  .o.  z
) ) ) )
76rexbidv 2478 . . . . . . . . 9  |-  ( x  =  X  ->  ( E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  E. z  e.  B  -.  (
( X  .o.  y
)  .o.  z )  =  ( X  .o.  ( y  .o.  z
) ) ) )
87rexbidv 2478 . . . . . . . 8  |-  ( x  =  X  ->  ( E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  E. y  e.  B  E. z  e.  B  -.  (
( X  .o.  y
)  .o.  z )  =  ( X  .o.  ( y  .o.  z
) ) ) )
98adantl 277 . . . . . . 7  |-  ( ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  (
( X  .o.  Y
)  .o.  Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  /\  x  =  X )  ->  ( E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  E. y  e.  B  E. z  e.  B  -.  (
( X  .o.  y
)  .o.  z )  =  ( X  .o.  ( y  .o.  z
) ) ) )
10 simpl2 1001 . . . . . . . 8  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  Y  e.  B
)
11 oveq2 5877 . . . . . . . . . . . . 13  |-  ( y  =  Y  ->  ( X  .o.  y )  =  ( X  .o.  Y
) )
1211oveq1d 5884 . . . . . . . . . . . 12  |-  ( y  =  Y  ->  (
( X  .o.  y
)  .o.  z )  =  ( ( X  .o.  Y )  .o.  z ) )
13 oveq1 5876 . . . . . . . . . . . . 13  |-  ( y  =  Y  ->  (
y  .o.  z )  =  ( Y  .o.  z ) )
1413oveq2d 5885 . . . . . . . . . . . 12  |-  ( y  =  Y  ->  ( X  .o.  ( y  .o.  z ) )  =  ( X  .o.  ( Y  .o.  z ) ) )
1512, 14eqeq12d 2192 . . . . . . . . . . 11  |-  ( y  =  Y  ->  (
( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) )  <->  ( ( X  .o.  Y )  .o.  z )  =  ( X  .o.  ( Y  .o.  z ) ) ) )
1615notbid 667 . . . . . . . . . 10  |-  ( y  =  Y  ->  ( -.  ( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) )  <->  -.  (
( X  .o.  Y
)  .o.  z )  =  ( X  .o.  ( Y  .o.  z
) ) ) )
1716adantl 277 . . . . . . . . 9  |-  ( ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  (
( X  .o.  Y
)  .o.  Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  /\  y  =  Y )  ->  ( -.  ( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) )  <->  -.  (
( X  .o.  Y
)  .o.  z )  =  ( X  .o.  ( Y  .o.  z
) ) ) )
1817rexbidv 2478 . . . . . . . 8  |-  ( ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  (
( X  .o.  Y
)  .o.  Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  /\  y  =  Y )  ->  ( E. z  e.  B  -.  ( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) )  <->  E. z  e.  B  -.  (
( X  .o.  Y
)  .o.  z )  =  ( X  .o.  ( Y  .o.  z
) ) ) )
19 simpl3 1002 . . . . . . . . 9  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  Z  e.  B
)
20 oveq2 5877 . . . . . . . . . . . 12  |-  ( z  =  Z  ->  (
( X  .o.  Y
)  .o.  z )  =  ( ( X  .o.  Y )  .o. 
Z ) )
21 oveq2 5877 . . . . . . . . . . . . 13  |-  ( z  =  Z  ->  ( Y  .o.  z )  =  ( Y  .o.  Z
) )
2221oveq2d 5885 . . . . . . . . . . . 12  |-  ( z  =  Z  ->  ( X  .o.  ( Y  .o.  z ) )  =  ( X  .o.  ( Y  .o.  Z ) ) )
2320, 22eqeq12d 2192 . . . . . . . . . . 11  |-  ( z  =  Z  ->  (
( ( X  .o.  Y )  .o.  z
)  =  ( X  .o.  ( Y  .o.  z ) )  <->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
2423notbid 667 . . . . . . . . . 10  |-  ( z  =  Z  ->  ( -.  ( ( X  .o.  Y )  .o.  z
)  =  ( X  .o.  ( Y  .o.  z ) )  <->  -.  (
( X  .o.  Y
)  .o.  Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
2524adantl 277 . . . . . . . . 9  |-  ( ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  (
( X  .o.  Y
)  .o.  Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  /\  z  =  Z )  ->  ( -.  ( ( X  .o.  Y )  .o.  z
)  =  ( X  .o.  ( Y  .o.  z ) )  <->  -.  (
( X  .o.  Y
)  .o.  Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
26 neneq 2369 . . . . . . . . . 10  |-  ( ( ( X  .o.  Y
)  .o.  Z )  =/=  ( X  .o.  ( Y  .o.  Z ) )  ->  -.  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )
2726adantl 277 . . . . . . . . 9  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  -.  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )
2819, 25, 27rspcedvd 2847 . . . . . . . 8  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  E. z  e.  B  -.  ( ( X  .o.  Y )  .o.  z
)  =  ( X  .o.  ( Y  .o.  z ) ) )
2910, 18, 28rspcedvd 2847 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  E. y  e.  B  E. z  e.  B  -.  ( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) ) )
301, 9, 29rspcedvd 2847 . . . . . 6  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  E. x  e.  B  E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) )
31 rexnalim 2466 . . . . . . . . 9  |-  ( E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  ->  -.  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) )
3231reximi 2574 . . . . . . . 8  |-  ( E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  ->  E. y  e.  B  -.  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) )
33 rexnalim 2466 . . . . . . . 8  |-  ( E. y  e.  B  -.  A. z  e.  B  ( ( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) )  ->  -.  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) )
3432, 33syl 14 . . . . . . 7  |-  ( E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  ->  -.  A. y  e.  B  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) )
3534reximi 2574 . . . . . 6  |-  ( E. x  e.  B  E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  ->  E. x  e.  B  -.  A. y  e.  B  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) )
36 rexnalim 2466 . . . . . 6  |-  ( E. x  e.  B  -.  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) )  ->  -.  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) )
3730, 35, 363syl 17 . . . . 5  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  -.  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) )
3837intnand 931 . . . 4  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  -.  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
39 issgrpn0.b . . . . 5  |-  B  =  ( Base `  M
)
40 issgrpn0.o . . . . 5  |-  .o.  =  ( +g  `  M )
4139, 40issgrp 12701 . . . 4  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
4238, 41sylnibr 677 . . 3  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  -.  M  e. Smgrp )
43 df-nel 2443 . . 3  |-  ( M  e/ Smgrp 
<->  -.  M  e. Smgrp )
4442, 43sylibr 134 . 2  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  M  e/ Smgrp )
4544ex 115 1  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) )  ->  M  e/ Smgrp ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347    e/ wnel 2442   A.wral 2455   E.wrex 2456   ` cfv 5212  (class class class)co 5869   Basecbs 12445   +g cplusg 12518  Mgmcmgm 12665  Smgrpcsgrp 12699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-cnex 7893  ax-resscn 7894  ax-1re 7896  ax-addrcl 7899
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-iota 5174  df-fun 5214  df-fn 5215  df-fv 5220  df-ov 5872  df-inn 8909  df-2 8967  df-ndx 12448  df-slot 12449  df-base 12451  df-plusg 12531  df-sgrp 12700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator