ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsgrp Unicode version

Theorem isnsgrp 12647
Description: A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.)
Hypotheses
Ref Expression
issgrpn0.b  |-  B  =  ( Base `  M
)
issgrpn0.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
isnsgrp  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) )  ->  M  e/ Smgrp ) )

Proof of Theorem isnsgrp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 995 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  X  e.  B
)
2 oveq1 5860 . . . . . . . . . . . . 13  |-  ( x  =  X  ->  (
x  .o.  y )  =  ( X  .o.  y ) )
32oveq1d 5868 . . . . . . . . . . . 12  |-  ( x  =  X  ->  (
( x  .o.  y
)  .o.  z )  =  ( ( X  .o.  y )  .o.  z ) )
4 oveq1 5860 . . . . . . . . . . . 12  |-  ( x  =  X  ->  (
x  .o.  ( y  .o.  z ) )  =  ( X  .o.  (
y  .o.  z )
) )
53, 4eqeq12d 2185 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  ( ( X  .o.  y )  .o.  z )  =  ( X  .o.  ( y  .o.  z ) ) ) )
65notbid 662 . . . . . . . . . 10  |-  ( x  =  X  ->  ( -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  -.  (
( X  .o.  y
)  .o.  z )  =  ( X  .o.  ( y  .o.  z
) ) ) )
76rexbidv 2471 . . . . . . . . 9  |-  ( x  =  X  ->  ( E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  E. z  e.  B  -.  (
( X  .o.  y
)  .o.  z )  =  ( X  .o.  ( y  .o.  z
) ) ) )
87rexbidv 2471 . . . . . . . 8  |-  ( x  =  X  ->  ( E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  E. y  e.  B  E. z  e.  B  -.  (
( X  .o.  y
)  .o.  z )  =  ( X  .o.  ( y  .o.  z
) ) ) )
98adantl 275 . . . . . . 7  |-  ( ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  (
( X  .o.  Y
)  .o.  Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  /\  x  =  X )  ->  ( E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  E. y  e.  B  E. z  e.  B  -.  (
( X  .o.  y
)  .o.  z )  =  ( X  .o.  ( y  .o.  z
) ) ) )
10 simpl2 996 . . . . . . . 8  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  Y  e.  B
)
11 oveq2 5861 . . . . . . . . . . . . 13  |-  ( y  =  Y  ->  ( X  .o.  y )  =  ( X  .o.  Y
) )
1211oveq1d 5868 . . . . . . . . . . . 12  |-  ( y  =  Y  ->  (
( X  .o.  y
)  .o.  z )  =  ( ( X  .o.  Y )  .o.  z ) )
13 oveq1 5860 . . . . . . . . . . . . 13  |-  ( y  =  Y  ->  (
y  .o.  z )  =  ( Y  .o.  z ) )
1413oveq2d 5869 . . . . . . . . . . . 12  |-  ( y  =  Y  ->  ( X  .o.  ( y  .o.  z ) )  =  ( X  .o.  ( Y  .o.  z ) ) )
1512, 14eqeq12d 2185 . . . . . . . . . . 11  |-  ( y  =  Y  ->  (
( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) )  <->  ( ( X  .o.  Y )  .o.  z )  =  ( X  .o.  ( Y  .o.  z ) ) ) )
1615notbid 662 . . . . . . . . . 10  |-  ( y  =  Y  ->  ( -.  ( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) )  <->  -.  (
( X  .o.  Y
)  .o.  z )  =  ( X  .o.  ( Y  .o.  z
) ) ) )
1716adantl 275 . . . . . . . . 9  |-  ( ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  (
( X  .o.  Y
)  .o.  Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  /\  y  =  Y )  ->  ( -.  ( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) )  <->  -.  (
( X  .o.  Y
)  .o.  z )  =  ( X  .o.  ( Y  .o.  z
) ) ) )
1817rexbidv 2471 . . . . . . . 8  |-  ( ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  (
( X  .o.  Y
)  .o.  Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  /\  y  =  Y )  ->  ( E. z  e.  B  -.  ( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) )  <->  E. z  e.  B  -.  (
( X  .o.  Y
)  .o.  z )  =  ( X  .o.  ( Y  .o.  z
) ) ) )
19 simpl3 997 . . . . . . . . 9  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  Z  e.  B
)
20 oveq2 5861 . . . . . . . . . . . 12  |-  ( z  =  Z  ->  (
( X  .o.  Y
)  .o.  z )  =  ( ( X  .o.  Y )  .o. 
Z ) )
21 oveq2 5861 . . . . . . . . . . . . 13  |-  ( z  =  Z  ->  ( Y  .o.  z )  =  ( Y  .o.  Z
) )
2221oveq2d 5869 . . . . . . . . . . . 12  |-  ( z  =  Z  ->  ( X  .o.  ( Y  .o.  z ) )  =  ( X  .o.  ( Y  .o.  Z ) ) )
2320, 22eqeq12d 2185 . . . . . . . . . . 11  |-  ( z  =  Z  ->  (
( ( X  .o.  Y )  .o.  z
)  =  ( X  .o.  ( Y  .o.  z ) )  <->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
2423notbid 662 . . . . . . . . . 10  |-  ( z  =  Z  ->  ( -.  ( ( X  .o.  Y )  .o.  z
)  =  ( X  .o.  ( Y  .o.  z ) )  <->  -.  (
( X  .o.  Y
)  .o.  Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
2524adantl 275 . . . . . . . . 9  |-  ( ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  (
( X  .o.  Y
)  .o.  Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  /\  z  =  Z )  ->  ( -.  ( ( X  .o.  Y )  .o.  z
)  =  ( X  .o.  ( Y  .o.  z ) )  <->  -.  (
( X  .o.  Y
)  .o.  Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
26 neneq 2362 . . . . . . . . . 10  |-  ( ( ( X  .o.  Y
)  .o.  Z )  =/=  ( X  .o.  ( Y  .o.  Z ) )  ->  -.  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )
2726adantl 275 . . . . . . . . 9  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  -.  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )
2819, 25, 27rspcedvd 2840 . . . . . . . 8  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  E. z  e.  B  -.  ( ( X  .o.  Y )  .o.  z
)  =  ( X  .o.  ( Y  .o.  z ) ) )
2910, 18, 28rspcedvd 2840 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  E. y  e.  B  E. z  e.  B  -.  ( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) ) )
301, 9, 29rspcedvd 2840 . . . . . 6  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  E. x  e.  B  E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) )
31 rexnalim 2459 . . . . . . . . 9  |-  ( E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  ->  -.  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) )
3231reximi 2567 . . . . . . . 8  |-  ( E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  ->  E. y  e.  B  -.  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) )
33 rexnalim 2459 . . . . . . . 8  |-  ( E. y  e.  B  -.  A. z  e.  B  ( ( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) )  ->  -.  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) )
3432, 33syl 14 . . . . . . 7  |-  ( E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  ->  -.  A. y  e.  B  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) )
3534reximi 2567 . . . . . 6  |-  ( E. x  e.  B  E. y  e.  B  E. z  e.  B  -.  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  ->  E. x  e.  B  -.  A. y  e.  B  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) )
36 rexnalim 2459 . . . . . 6  |-  ( E. x  e.  B  -.  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) )  ->  -.  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) )
3730, 35, 363syl 17 . . . . 5  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  -.  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) )
3837intnand 926 . . . 4  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  -.  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
39 issgrpn0.b . . . . 5  |-  B  =  ( Base `  M
)
40 issgrpn0.o . . . . 5  |-  .o.  =  ( +g  `  M )
4139, 40issgrp 12644 . . . 4  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
4238, 41sylnibr 672 . . 3  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  -.  M  e. Smgrp )
43 df-nel 2436 . . 3  |-  ( M  e/ Smgrp 
<->  -.  M  e. Smgrp )
4442, 43sylibr 133 . 2  |-  ( ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) ) )  ->  M  e/ Smgrp )
4544ex 114 1  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( ( X  .o.  Y )  .o. 
Z )  =/=  ( X  .o.  ( Y  .o.  Z ) )  ->  M  e/ Smgrp ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340    e/ wnel 2435   A.wral 2448   E.wrex 2449   ` cfv 5198  (class class class)co 5853   Basecbs 12416   +g cplusg 12480  Mgmcmgm 12608  Smgrpcsgrp 12642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-sgrp 12643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator