| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isnsgrp | Unicode version | ||
| Description: A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.) |
| Ref | Expression |
|---|---|
| issgrpn0.b |
|
| issgrpn0.o |
|
| Ref | Expression |
|---|---|
| isnsgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1024 |
. . . . . . 7
| |
| 2 | oveq1 6008 |
. . . . . . . . . . . . 13
| |
| 3 | 2 | oveq1d 6016 |
. . . . . . . . . . . 12
|
| 4 | oveq1 6008 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | eqeq12d 2244 |
. . . . . . . . . . 11
|
| 6 | 5 | notbid 671 |
. . . . . . . . . 10
|
| 7 | 6 | rexbidv 2531 |
. . . . . . . . 9
|
| 8 | 7 | rexbidv 2531 |
. . . . . . . 8
|
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | simpl2 1025 |
. . . . . . . 8
| |
| 11 | oveq2 6009 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | oveq1d 6016 |
. . . . . . . . . . . 12
|
| 13 | oveq1 6008 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | oveq2d 6017 |
. . . . . . . . . . . 12
|
| 15 | 12, 14 | eqeq12d 2244 |
. . . . . . . . . . 11
|
| 16 | 15 | notbid 671 |
. . . . . . . . . 10
|
| 17 | 16 | adantl 277 |
. . . . . . . . 9
|
| 18 | 17 | rexbidv 2531 |
. . . . . . . 8
|
| 19 | simpl3 1026 |
. . . . . . . . 9
| |
| 20 | oveq2 6009 |
. . . . . . . . . . . 12
| |
| 21 | oveq2 6009 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | oveq2d 6017 |
. . . . . . . . . . . 12
|
| 23 | 20, 22 | eqeq12d 2244 |
. . . . . . . . . . 11
|
| 24 | 23 | notbid 671 |
. . . . . . . . . 10
|
| 25 | 24 | adantl 277 |
. . . . . . . . 9
|
| 26 | neneq 2422 |
. . . . . . . . . 10
| |
| 27 | 26 | adantl 277 |
. . . . . . . . 9
|
| 28 | 19, 25, 27 | rspcedvd 2913 |
. . . . . . . 8
|
| 29 | 10, 18, 28 | rspcedvd 2913 |
. . . . . . 7
|
| 30 | 1, 9, 29 | rspcedvd 2913 |
. . . . . 6
|
| 31 | rexnalim 2519 |
. . . . . . . . 9
| |
| 32 | 31 | reximi 2627 |
. . . . . . . 8
|
| 33 | rexnalim 2519 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl 14 |
. . . . . . 7
|
| 35 | 34 | reximi 2627 |
. . . . . 6
|
| 36 | rexnalim 2519 |
. . . . . 6
| |
| 37 | 30, 35, 36 | 3syl 17 |
. . . . 5
|
| 38 | 37 | intnand 936 |
. . . 4
|
| 39 | issgrpn0.b |
. . . . 5
| |
| 40 | issgrpn0.o |
. . . . 5
| |
| 41 | 39, 40 | issgrp 13436 |
. . . 4
|
| 42 | 38, 41 | sylnibr 681 |
. . 3
|
| 43 | df-nel 2496 |
. . 3
| |
| 44 | 42, 43 | sylibr 134 |
. 2
|
| 45 | 44 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-sgrp 13435 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |