ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pc2dvds Unicode version

Theorem pc2dvds 12283
Description: A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc2dvds  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
Distinct variable groups:    A, p    B, p

Proof of Theorem pc2dvds
StepHypRef Expression
1 pcdvdstr 12280 . . . . 5  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  B ) )
21ancoms 266 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  B ) )
32ralrimiva 2543 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
433expia 1200 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
) ) )
5 2prm 12081 . . . . . . . 8  |-  2  e.  Prime
6 elex2 2746 . . . . . . . 8  |-  ( 2  e.  Prime  ->  E. w  w  e.  Prime )
75, 6ax-mp 5 . . . . . . 7  |-  E. w  w  e.  Prime
8 r19.2m 3501 . . . . . . 7  |-  ( ( E. w  w  e. 
Prime  /\  A. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B ) )  ->  E. p  e.  Prime  ( p  pCnt  0 )  <_  ( p  pCnt  B ) )
97, 8mpan 422 . . . . . 6  |-  ( A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  E. p  e.  Prime  ( p  pCnt  0 )  <_  (
p  pCnt  B )
)
10 id 19 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  p  e. 
Prime )
11 zq 9585 . . . . . . . . . . . . . 14  |-  ( B  e.  ZZ  ->  B  e.  QQ )
1211adantl 275 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  QQ )
13 pcxcl 12265 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  B  e.  QQ )  ->  (
p  pCnt  B )  e.  RR* )
1410, 12, 13syl2anr 288 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  B )  e.  RR* )
15 pnfge 9746 . . . . . . . . . . . 12  |-  ( ( p  pCnt  B )  e.  RR*  ->  ( p  pCnt  B )  <_ +oo )
1614, 15syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  B )  <_ +oo )
1716biantrurd 303 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( +oo  <_  ( p  pCnt  B )  <->  ( ( p  pCnt  B
)  <_ +oo  /\ +oo  <_  ( p  pCnt  B
) ) ) )
18 pc0 12258 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  ( p 
pCnt  0 )  = +oo )
1918adantl 275 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  0 )  = +oo )
2019breq1d 3999 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  <-> +oo  <_  ( p  pCnt  B ) ) )
21 pnfxr 7972 . . . . . . . . . . 11  |- +oo  e.  RR*
22 xrletri3 9761 . . . . . . . . . . 11  |-  ( ( ( p  pCnt  B
)  e.  RR*  /\ +oo  e.  RR* )  ->  (
( p  pCnt  B
)  = +oo  <->  ( (
p  pCnt  B )  <_ +oo  /\ +oo  <_  ( p  pCnt  B )
) ) )
2314, 21, 22sylancl 411 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  B )  = +oo  <->  (
( p  pCnt  B
)  <_ +oo  /\ +oo  <_  ( p  pCnt  B
) ) ) )
2417, 20, 233bitr4d 219 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  <->  ( p  pCnt  B )  = +oo )
)
25 pnfnre 7961 . . . . . . . . . . . 12  |- +oo  e/  RR
2625neli 2437 . . . . . . . . . . 11  |-  -. +oo  e.  RR
27 eleq1 2233 . . . . . . . . . . 11  |-  ( ( p  pCnt  B )  = +oo  ->  ( (
p  pCnt  B )  e.  RR  <-> +oo  e.  RR ) )
2826, 27mtbiri 670 . . . . . . . . . 10  |-  ( ( p  pCnt  B )  = +oo  ->  -.  (
p  pCnt  B )  e.  RR )
29 simplr 525 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  B  e.  ZZ )
30 0zd 9224 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  0  e.  ZZ )
31 zdceq 9287 . . . . . . . . . . . 12  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
3229, 30, 31syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  -> DECID 
B  =  0 )
33 pczcl 12252 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( p  pCnt  B
)  e.  NN0 )
3433nn0red 9189 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( p  pCnt  B
)  e.  RR )
3534adantll 473 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  p  e.  Prime )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( p  pCnt  B )  e.  RR )
3635an4s 583 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( p  e. 
Prime  /\  B  =/=  0
) )  ->  (
p  pCnt  B )  e.  RR )
3736expr 373 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( B  =/=  0  ->  ( p  pCnt  B )  e.  RR ) )
3837a1d 22 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  (DECID  B  =  0  -> 
( B  =/=  0  ->  ( p  pCnt  B
)  e.  RR ) ) )
3938necon1bddc 2417 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  (DECID  B  =  0  -> 
( -.  ( p 
pCnt  B )  e.  RR  ->  B  =  0 ) ) )
4032, 39mpd 13 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( -.  (
p  pCnt  B )  e.  RR  ->  B  = 
0 ) )
4128, 40syl5 32 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  B )  = +oo  ->  B  =  0 ) )
4224, 41sylbid 149 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  B  = 
0 ) )
4342rexlimdva 2587 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  B  =  0 ) )
44 0dvds 11773 . . . . . . . 8  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
4544adantl 275 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  ||  B  <->  B  =  0 ) )
4643, 45sylibrd 168 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  0  ||  B ) )
479, 46syl5 32 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  0  ||  B ) )
4847adantr 274 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =  0 )  ->  ( A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  0  ||  B ) )
49 oveq2 5861 . . . . . . . 8  |-  ( A  =  0  ->  (
p  pCnt  A )  =  ( p  pCnt  0 ) )
5049breq1d 3999 . . . . . . 7  |-  ( A  =  0  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( p  pCnt  0 )  <_  (
p  pCnt  B )
) )
5150ralbidv 2470 . . . . . 6  |-  ( A  =  0  ->  ( A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
)  <->  A. p  e.  Prime  ( p  pCnt  0 )  <_  ( p  pCnt  B ) ) )
52 breq1 3992 . . . . . 6  |-  ( A  =  0  ->  ( A  ||  B  <->  0  ||  B ) )
5351, 52imbi12d 233 . . . . 5  |-  ( A  =  0  ->  (
( A. p  e. 
Prime  ( p  pCnt  A
)  <_  ( p  pCnt  B )  ->  A  ||  B )  <->  ( A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  0  ||  B ) ) )
5453adantl 275 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =  0 )  ->  ( ( A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
)  ->  A  ||  B
)  <->  ( A. p  e.  Prime  ( p  pCnt  0 )  <_  (
p  pCnt  B )  ->  0  ||  B ) ) )
5548, 54mpbird 166 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =  0 )  ->  ( A. p  e.  Prime  ( p 
pCnt  A )  <_  (
p  pCnt  B )  ->  A  ||  B ) )
56 zdvdsdc 11774 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A 
||  B )
5756adantr 274 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  -> DECID  A  ||  B )
58 gcddvds 11918 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
5958simpld 111 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  A )
60 gcdcl 11921 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
6160nn0zd 9332 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
62 simpl 108 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
63 dvdsabsb 11772 . . . . . . . . . . . 12  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  gcd  B )  ||  ( abs `  A ) ) )
6461, 62, 63syl2anc 409 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  gcd  B )  ||  ( abs `  A ) ) )
6559, 64mpbid 146 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  ( abs `  A ) )
6665adantr 274 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  ||  ( abs `  A ) )
67 simpl 108 . . . . . . . . . . . . 13  |-  ( ( A  =  0  /\  B  =  0 )  ->  A  =  0 )
6867necon3ai 2389 . . . . . . . . . . . 12  |-  ( A  =/=  0  ->  -.  ( A  =  0  /\  B  =  0
) )
69 gcdn0cl 11917 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
7068, 69sylan2 284 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  NN )
7170nnzd 9333 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  ZZ )
7270nnne0d 8923 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  =/=  0
)
73 nnabscl 11064 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  NN )
7473adantlr 474 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  NN )
7574nnzd 9333 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  ZZ )
76 dvdsval2 11752 . . . . . . . . . 10  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  ( abs `  A )  e.  ZZ )  ->  (
( A  gcd  B
)  ||  ( abs `  A )  <->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  ZZ ) )
7771, 72, 75, 76syl3anc 1233 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  ||  ( abs `  A )  <-> 
( ( abs `  A
)  /  ( A  gcd  B ) )  e.  ZZ ) )
7866, 77mpbid 146 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  ZZ )
79 nnre 8885 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  NN  ->  ( abs `  A )  e.  RR )
80 nngt0 8903 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  NN  ->  0  <  ( abs `  A
) )
8179, 80jca 304 . . . . . . . . . 10  |-  ( ( abs `  A )  e.  NN  ->  (
( abs `  A
)  e.  RR  /\  0  <  ( abs `  A
) ) )
82 nnre 8885 . . . . . . . . . . 11  |-  ( ( A  gcd  B )  e.  NN  ->  ( A  gcd  B )  e.  RR )
83 nngt0 8903 . . . . . . . . . . 11  |-  ( ( A  gcd  B )  e.  NN  ->  0  <  ( A  gcd  B
) )
8482, 83jca 304 . . . . . . . . . 10  |-  ( ( A  gcd  B )  e.  NN  ->  (
( A  gcd  B
)  e.  RR  /\  0  <  ( A  gcd  B ) ) )
85 divgt0 8788 . . . . . . . . . 10  |-  ( ( ( ( abs `  A
)  e.  RR  /\  0  <  ( abs `  A
) )  /\  (
( A  gcd  B
)  e.  RR  /\  0  <  ( A  gcd  B ) ) )  -> 
0  <  ( ( abs `  A )  / 
( A  gcd  B
) ) )
8681, 84, 85syl2an 287 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
0  <  ( ( abs `  A )  / 
( A  gcd  B
) ) )
8774, 70, 86syl2anc 409 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  0  <  ( ( abs `  A
)  /  ( A  gcd  B ) ) )
88 elnnz 9222 . . . . . . . 8  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  NN  <->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )
8978, 87, 88sylanbrc 415 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  NN )
90 elnn1uz2 9566 . . . . . . 7  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  NN  <->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) ) )
9189, 90sylib 121 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) ) )
9258simprd 113 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  B )
9392adantr 274 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  ||  B
)
94 breq1 3992 . . . . . . . . 9  |-  ( ( A  gcd  B )  =  ( abs `  A
)  ->  ( ( A  gcd  B )  ||  B 
<->  ( abs `  A
)  ||  B )
)
9593, 94syl5ibcom 154 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  =  ( abs `  A
)  ->  ( abs `  A )  ||  B
) )
9674nncnd 8892 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  CC )
9770nncnd 8892 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  CC )
98 1cnd 7936 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  1  e.  CC )
9970nnap0d 8924 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B ) #  0 )
10096, 97, 98, 99divmulapd 8729 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  <->  ( ( A  gcd  B )  x.  1 )  =  ( abs `  A ) ) )
10197mulid1d 7937 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  x.  1 )  =  ( A  gcd  B ) )
102101eqeq1d 2179 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( A  gcd  B
)  x.  1 )  =  ( abs `  A
)  <->  ( A  gcd  B )  =  ( abs `  A ) ) )
103100, 102bitrd 187 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  <->  ( A  gcd  B )  =  ( abs `  A ) ) )
104 absdvdsb 11771 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  ( abs `  A ) 
||  B ) )
105104adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  ||  B  <->  ( abs `  A
)  ||  B )
)
10695, 103, 1053imtr4d 202 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  ->  A  ||  B ) )
107 exprmfct 12092 . . . . . . . 8  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) )
108 simprl 526 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  p  e.  Prime )
10974adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  NN )
110109nnzd 9333 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  ZZ )
111109nnne0d 8923 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  =/=  0 )
11270adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( A  gcd  B )  e.  NN )
113 pcdiv 12256 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  (
( abs `  A
)  e.  ZZ  /\  ( abs `  A )  =/=  0 )  /\  ( A  gcd  B )  e.  NN )  -> 
( p  pCnt  (
( abs `  A
)  /  ( A  gcd  B ) ) )  =  ( ( p  pCnt  ( abs `  A ) )  -  ( p  pCnt  ( A  gcd  B ) ) ) )
114108, 110, 111, 112, 113syl121anc 1238 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  =  ( ( p  pCnt  ( abs `  A ) )  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
115 simplll 528 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  e.  ZZ )
116 zq 9585 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ZZ  ->  A  e.  QQ )
117115, 116syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  e.  QQ )
118 pcabs 12279 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  A  e.  QQ )  ->  (
p  pCnt  ( abs `  A ) )  =  ( p  pCnt  A
) )
119108, 117, 118syl2anc 409 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( abs `  A ) )  =  ( p  pCnt  A
) )
120119oveq1d 5868 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( abs `  A ) )  -  ( p  pCnt  ( A  gcd  B ) ) )  =  ( ( p  pCnt  A
)  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
121114, 120eqtrd 2203 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  =  ( ( p  pCnt  A )  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
122 simprr 527 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) )
12389adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  NN )
124 pcelnn 12274 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  NN )  -> 
( ( p  pCnt  ( ( abs `  A
)  /  ( A  gcd  B ) ) )  e.  NN  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) ) )
125108, 123, 124syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  (
( abs `  A
)  /  ( A  gcd  B ) ) )  e.  NN  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) ) )
126122, 125mpbird 166 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  e.  NN )
127121, 126eqeltrrd 2248 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  -  ( p 
pCnt  ( A  gcd  B ) ) )  e.  NN )
128108, 112pccld 12254 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  e. 
NN0 )
129128nn0zd 9332 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  e.  ZZ )
130 simplr 525 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  =/=  0 )
131 pczcl 12252 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( p  pCnt  A
)  e.  NN0 )
132108, 115, 130, 131syl12anc 1231 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  NN0 )
133132nn0zd 9332 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  ZZ )
134 znnsub 9263 . . . . . . . . . . . . . 14  |-  ( ( ( p  pCnt  ( A  gcd  B ) )  e.  ZZ  /\  (
p  pCnt  A )  e.  ZZ )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  ( ( p 
pCnt  A )  -  (
p  pCnt  ( A  gcd  B ) ) )  e.  NN ) )
135129, 133, 134syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  ( ( p 
pCnt  A )  -  (
p  pCnt  ( A  gcd  B ) ) )  e.  NN ) )
136127, 135mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  < 
( p  pCnt  A
) )
137 zltnle 9258 . . . . . . . . . . . . 13  |-  ( ( ( p  pCnt  ( A  gcd  B ) )  e.  ZZ  /\  (
p  pCnt  A )  e.  ZZ )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  -.  ( p  pCnt  A )  <_  (
p  pCnt  ( A  gcd  B ) ) ) )
138129, 133, 137syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  -.  ( p  pCnt  A )  <_  (
p  pCnt  ( A  gcd  B ) ) ) )
139136, 138mpbid 146 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  ( A  gcd  B ) ) )
140132nn0red 9189 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  RR )
141 simpllr 529 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  B  e.  ZZ )
142 nprmdvds1 12094 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  -.  p  ||  1 )
143142ad2antrl 487 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  p  ||  1 )
144 gcdid0 11935 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
145115, 144syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( A  gcd  0 )  =  ( abs `  A
) )
146145oveq2d 5869 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  0 ) )  =  ( ( abs `  A )  /  ( abs `  A ) ) )
14796adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  CC )
148109nnap0d 8924 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A ) #  0 )
149147, 148dividapd 8703 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( abs `  A ) )  =  1 )
150146, 149eqtrd 2203 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  0 ) )  =  1 )
151150breq2d 4001 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  0
) )  <->  p  ||  1
) )
152143, 151mtbird 668 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  p  ||  ( ( abs `  A )  /  ( A  gcd  0 ) ) )
153 oveq2 5861 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
154153oveq2d 5869 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  0  ->  (
( abs `  A
)  /  ( A  gcd  B ) )  =  ( ( abs `  A )  /  ( A  gcd  0 ) ) )
155154breq2d 4001 . . . . . . . . . . . . . . . . . 18  |-  ( B  =  0  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  B
) )  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  0 ) ) ) )
156122, 155syl5ibcom 154 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( B  =  0  ->  p 
||  ( ( abs `  A )  /  ( A  gcd  0 ) ) ) )
157156necon3bd 2383 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( -.  p  ||  ( ( abs `  A )  /  ( A  gcd  0 ) )  ->  B  =/=  0 ) )
158152, 157mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  B  =/=  0 )
159108, 141, 158, 33syl12anc 1231 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  B )  e.  NN0 )
160159nn0red 9189 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  B )  e.  RR )
161 lemininf 11197 . . . . . . . . . . . . 13  |-  ( ( ( p  pCnt  A
)  e.  RR  /\  ( p  pCnt  A )  e.  RR  /\  (
p  pCnt  B )  e.  RR )  ->  (
( p  pCnt  A
)  <_ inf ( {
( p  pCnt  A
) ,  ( p 
pCnt  B ) } ,  RR ,  <  )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
162140, 140, 160, 161syl3anc 1233 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_ inf ( {
( p  pCnt  A
) ,  ( p 
pCnt  B ) } ,  RR ,  <  )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
163 pcgcd 12282 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
p  pCnt  ( A  gcd  B ) )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
164108, 115, 141, 163syl3anc 1233 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
165159nn0zd 9332 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  B )  e.  ZZ )
166 2zinfmin 11206 . . . . . . . . . . . . . . 15  |-  ( ( ( p  pCnt  A
)  e.  ZZ  /\  ( p  pCnt  B )  e.  ZZ )  -> inf ( { ( p  pCnt  A ) ,  ( p 
pCnt  B ) } ,  RR ,  <  )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
167133, 165, 166syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  -> inf ( { ( p  pCnt  A
) ,  ( p 
pCnt  B ) } ,  RR ,  <  )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
168164, 167eqtr4d 2206 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  = inf ( { ( p 
pCnt  A ) ,  ( p  pCnt  B ) } ,  RR ,  <  ) )
169168breq2d 4001 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  ( A  gcd  B
) )  <->  ( p  pCnt  A )  <_ inf ( { ( p  pCnt  A
) ,  ( p 
pCnt  B ) } ,  RR ,  <  ) ) )
170140leidd 8433 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  A
) )
171170biantrurd 303 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
172162, 169, 1713bitr4rd 220 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( p  pCnt  A )  <_  (
p  pCnt  ( A  gcd  B ) ) ) )
173139, 172mtbird 668 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
174173expr 373 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  B
) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
175174reximdva 2572 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( E. p  e.  Prime  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) )  ->  E. p  e.  Prime  -.  ( p  pCnt  A
)  <_  ( p  pCnt  B ) ) )
176 rexnalim 2459 . . . . . . . 8  |-  ( E. p  e.  Prime  -.  (
p  pCnt  A )  <_  ( p  pCnt  B
)  ->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
177107, 175, 176syl56 34 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
)  ->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
178106, 177orim12d 781 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( ( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) )  ->  ( A  ||  B  \/  -.  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) ) )
17991, 178mpd 13 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  ||  B  \/  -.  A. p  e.  Prime  ( p 
pCnt  A )  <_  (
p  pCnt  B )
) )
180179ord 719 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( -.  A  ||  B  ->  -.  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
181 condc 848 . . . 4  |-  (DECID  A  ||  B  ->  ( ( -.  A  ||  B  ->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
) )  ->  ( A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
)  ->  A  ||  B
) ) )
18257, 180, 181sylc 62 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A. p  e.  Prime  ( p 
pCnt  A )  <_  (
p  pCnt  B )  ->  A  ||  B ) )
183 0zd 9224 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  0  e.  ZZ )
184 zdceq 9287 . . . . 5  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  =  0 )
18562, 183, 184syl2anc 409 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  =  0 )
186 dcne 2351 . . . 4  |-  (DECID  A  =  0  <->  ( A  =  0  \/  A  =/=  0 ) )
187185, 186sylib 121 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  =  0  \/  A  =/=  0
) )
18855, 182, 187mpjaodan 793 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A. p  e. 
Prime  ( p  pCnt  A
)  <_  ( p  pCnt  B )  ->  A  ||  B ) )
1894, 188impbid 128 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449   ifcif 3526   {cpr 3584   class class class wbr 3989   ` cfv 5198  (class class class)co 5853  infcinf 6960   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    x. cmul 7779   +oocpnf 7951   RR*cxr 7953    < clt 7954    <_ cle 7955    - cmin 8090    / cdiv 8589   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   QQcq 9578   abscabs 10961    || cdvds 11749    gcd cgcd 11897   Primecprime 12061    pCnt cpc 12238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-xnn0 9199  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-pc 12239
This theorem is referenced by:  pc11  12284  pcz  12285  pcprmpw2  12286  pockthg  12309
  Copyright terms: Public domain W3C validator