ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pc2dvds Unicode version

Theorem pc2dvds 12332
Description: A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc2dvds  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
Distinct variable groups:    A, p    B, p

Proof of Theorem pc2dvds
StepHypRef Expression
1 pcdvdstr 12329 . . . . 5  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  B ) )
21ancoms 268 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  B ) )
32ralrimiva 2550 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
433expia 1205 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
) ) )
5 2prm 12130 . . . . . . . 8  |-  2  e.  Prime
6 elex2 2755 . . . . . . . 8  |-  ( 2  e.  Prime  ->  E. w  w  e.  Prime )
75, 6ax-mp 5 . . . . . . 7  |-  E. w  w  e.  Prime
8 r19.2m 3511 . . . . . . 7  |-  ( ( E. w  w  e. 
Prime  /\  A. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B ) )  ->  E. p  e.  Prime  ( p  pCnt  0 )  <_  ( p  pCnt  B ) )
97, 8mpan 424 . . . . . 6  |-  ( A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  E. p  e.  Prime  ( p  pCnt  0 )  <_  (
p  pCnt  B )
)
10 id 19 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  p  e. 
Prime )
11 zq 9629 . . . . . . . . . . . . . 14  |-  ( B  e.  ZZ  ->  B  e.  QQ )
1211adantl 277 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  QQ )
13 pcxcl 12314 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  B  e.  QQ )  ->  (
p  pCnt  B )  e.  RR* )
1410, 12, 13syl2anr 290 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  B )  e.  RR* )
15 pnfge 9792 . . . . . . . . . . . 12  |-  ( ( p  pCnt  B )  e.  RR*  ->  ( p  pCnt  B )  <_ +oo )
1614, 15syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  B )  <_ +oo )
1716biantrurd 305 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( +oo  <_  ( p  pCnt  B )  <->  ( ( p  pCnt  B
)  <_ +oo  /\ +oo  <_  ( p  pCnt  B
) ) ) )
18 pc0 12307 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  ( p 
pCnt  0 )  = +oo )
1918adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  0 )  = +oo )
2019breq1d 4015 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  <-> +oo  <_  ( p  pCnt  B ) ) )
21 pnfxr 8013 . . . . . . . . . . 11  |- +oo  e.  RR*
22 xrletri3 9807 . . . . . . . . . . 11  |-  ( ( ( p  pCnt  B
)  e.  RR*  /\ +oo  e.  RR* )  ->  (
( p  pCnt  B
)  = +oo  <->  ( (
p  pCnt  B )  <_ +oo  /\ +oo  <_  ( p  pCnt  B )
) ) )
2314, 21, 22sylancl 413 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  B )  = +oo  <->  (
( p  pCnt  B
)  <_ +oo  /\ +oo  <_  ( p  pCnt  B
) ) ) )
2417, 20, 233bitr4d 220 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  <->  ( p  pCnt  B )  = +oo )
)
25 pnfnre 8002 . . . . . . . . . . . 12  |- +oo  e/  RR
2625neli 2444 . . . . . . . . . . 11  |-  -. +oo  e.  RR
27 eleq1 2240 . . . . . . . . . . 11  |-  ( ( p  pCnt  B )  = +oo  ->  ( (
p  pCnt  B )  e.  RR  <-> +oo  e.  RR ) )
2826, 27mtbiri 675 . . . . . . . . . 10  |-  ( ( p  pCnt  B )  = +oo  ->  -.  (
p  pCnt  B )  e.  RR )
29 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  B  e.  ZZ )
30 0zd 9268 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  0  e.  ZZ )
31 zdceq 9331 . . . . . . . . . . . 12  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
3229, 30, 31syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  -> DECID 
B  =  0 )
33 pczcl 12301 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( p  pCnt  B
)  e.  NN0 )
3433nn0red 9233 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( p  pCnt  B
)  e.  RR )
3534adantll 476 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  p  e.  Prime )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( p  pCnt  B )  e.  RR )
3635an4s 588 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( p  e. 
Prime  /\  B  =/=  0
) )  ->  (
p  pCnt  B )  e.  RR )
3736expr 375 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( B  =/=  0  ->  ( p  pCnt  B )  e.  RR ) )
3837a1d 22 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  (DECID  B  =  0  -> 
( B  =/=  0  ->  ( p  pCnt  B
)  e.  RR ) ) )
3938necon1bddc 2424 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  (DECID  B  =  0  -> 
( -.  ( p 
pCnt  B )  e.  RR  ->  B  =  0 ) ) )
4032, 39mpd 13 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( -.  (
p  pCnt  B )  e.  RR  ->  B  = 
0 ) )
4128, 40syl5 32 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  B )  = +oo  ->  B  =  0 ) )
4224, 41sylbid 150 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  B  = 
0 ) )
4342rexlimdva 2594 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  B  =  0 ) )
44 0dvds 11821 . . . . . . . 8  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
4544adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  ||  B  <->  B  =  0 ) )
4643, 45sylibrd 169 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  0  ||  B ) )
479, 46syl5 32 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  0  ||  B ) )
4847adantr 276 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =  0 )  ->  ( A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  0  ||  B ) )
49 oveq2 5886 . . . . . . . 8  |-  ( A  =  0  ->  (
p  pCnt  A )  =  ( p  pCnt  0 ) )
5049breq1d 4015 . . . . . . 7  |-  ( A  =  0  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( p  pCnt  0 )  <_  (
p  pCnt  B )
) )
5150ralbidv 2477 . . . . . 6  |-  ( A  =  0  ->  ( A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
)  <->  A. p  e.  Prime  ( p  pCnt  0 )  <_  ( p  pCnt  B ) ) )
52 breq1 4008 . . . . . 6  |-  ( A  =  0  ->  ( A  ||  B  <->  0  ||  B ) )
5351, 52imbi12d 234 . . . . 5  |-  ( A  =  0  ->  (
( A. p  e. 
Prime  ( p  pCnt  A
)  <_  ( p  pCnt  B )  ->  A  ||  B )  <->  ( A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  0  ||  B ) ) )
5453adantl 277 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =  0 )  ->  ( ( A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
)  ->  A  ||  B
)  <->  ( A. p  e.  Prime  ( p  pCnt  0 )  <_  (
p  pCnt  B )  ->  0  ||  B ) ) )
5548, 54mpbird 167 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =  0 )  ->  ( A. p  e.  Prime  ( p 
pCnt  A )  <_  (
p  pCnt  B )  ->  A  ||  B ) )
56 zdvdsdc 11822 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A 
||  B )
5756adantr 276 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  -> DECID  A  ||  B )
58 gcddvds 11967 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
5958simpld 112 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  A )
60 gcdcl 11970 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
6160nn0zd 9376 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
62 simpl 109 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
63 dvdsabsb 11820 . . . . . . . . . . . 12  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  gcd  B )  ||  ( abs `  A ) ) )
6461, 62, 63syl2anc 411 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  gcd  B )  ||  ( abs `  A ) ) )
6559, 64mpbid 147 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  ( abs `  A ) )
6665adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  ||  ( abs `  A ) )
67 simpl 109 . . . . . . . . . . . . 13  |-  ( ( A  =  0  /\  B  =  0 )  ->  A  =  0 )
6867necon3ai 2396 . . . . . . . . . . . 12  |-  ( A  =/=  0  ->  -.  ( A  =  0  /\  B  =  0
) )
69 gcdn0cl 11966 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
7068, 69sylan2 286 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  NN )
7170nnzd 9377 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  ZZ )
7270nnne0d 8967 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  =/=  0
)
73 nnabscl 11112 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  NN )
7473adantlr 477 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  NN )
7574nnzd 9377 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  ZZ )
76 dvdsval2 11800 . . . . . . . . . 10  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  ( abs `  A )  e.  ZZ )  ->  (
( A  gcd  B
)  ||  ( abs `  A )  <->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  ZZ ) )
7771, 72, 75, 76syl3anc 1238 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  ||  ( abs `  A )  <-> 
( ( abs `  A
)  /  ( A  gcd  B ) )  e.  ZZ ) )
7866, 77mpbid 147 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  ZZ )
79 nnre 8929 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  NN  ->  ( abs `  A )  e.  RR )
80 nngt0 8947 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  NN  ->  0  <  ( abs `  A
) )
8179, 80jca 306 . . . . . . . . . 10  |-  ( ( abs `  A )  e.  NN  ->  (
( abs `  A
)  e.  RR  /\  0  <  ( abs `  A
) ) )
82 nnre 8929 . . . . . . . . . . 11  |-  ( ( A  gcd  B )  e.  NN  ->  ( A  gcd  B )  e.  RR )
83 nngt0 8947 . . . . . . . . . . 11  |-  ( ( A  gcd  B )  e.  NN  ->  0  <  ( A  gcd  B
) )
8482, 83jca 306 . . . . . . . . . 10  |-  ( ( A  gcd  B )  e.  NN  ->  (
( A  gcd  B
)  e.  RR  /\  0  <  ( A  gcd  B ) ) )
85 divgt0 8832 . . . . . . . . . 10  |-  ( ( ( ( abs `  A
)  e.  RR  /\  0  <  ( abs `  A
) )  /\  (
( A  gcd  B
)  e.  RR  /\  0  <  ( A  gcd  B ) ) )  -> 
0  <  ( ( abs `  A )  / 
( A  gcd  B
) ) )
8681, 84, 85syl2an 289 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
0  <  ( ( abs `  A )  / 
( A  gcd  B
) ) )
8774, 70, 86syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  0  <  ( ( abs `  A
)  /  ( A  gcd  B ) ) )
88 elnnz 9266 . . . . . . . 8  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  NN  <->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )
8978, 87, 88sylanbrc 417 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  NN )
90 elnn1uz2 9610 . . . . . . 7  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  NN  <->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) ) )
9189, 90sylib 122 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) ) )
9258simprd 114 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  B )
9392adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  ||  B
)
94 breq1 4008 . . . . . . . . 9  |-  ( ( A  gcd  B )  =  ( abs `  A
)  ->  ( ( A  gcd  B )  ||  B 
<->  ( abs `  A
)  ||  B )
)
9593, 94syl5ibcom 155 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  =  ( abs `  A
)  ->  ( abs `  A )  ||  B
) )
9674nncnd 8936 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  CC )
9770nncnd 8936 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  CC )
98 1cnd 7976 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  1  e.  CC )
9970nnap0d 8968 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B ) #  0 )
10096, 97, 98, 99divmulapd 8772 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  <->  ( ( A  gcd  B )  x.  1 )  =  ( abs `  A ) ) )
10197mulridd 7977 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  x.  1 )  =  ( A  gcd  B ) )
102101eqeq1d 2186 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( A  gcd  B
)  x.  1 )  =  ( abs `  A
)  <->  ( A  gcd  B )  =  ( abs `  A ) ) )
103100, 102bitrd 188 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  <->  ( A  gcd  B )  =  ( abs `  A ) ) )
104 absdvdsb 11819 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  ( abs `  A ) 
||  B ) )
105104adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  ||  B  <->  ( abs `  A
)  ||  B )
)
10695, 103, 1053imtr4d 203 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  ->  A  ||  B ) )
107 exprmfct 12141 . . . . . . . 8  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) )
108 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  p  e.  Prime )
10974adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  NN )
110109nnzd 9377 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  ZZ )
111109nnne0d 8967 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  =/=  0 )
11270adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( A  gcd  B )  e.  NN )
113 pcdiv 12305 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  (
( abs `  A
)  e.  ZZ  /\  ( abs `  A )  =/=  0 )  /\  ( A  gcd  B )  e.  NN )  -> 
( p  pCnt  (
( abs `  A
)  /  ( A  gcd  B ) ) )  =  ( ( p  pCnt  ( abs `  A ) )  -  ( p  pCnt  ( A  gcd  B ) ) ) )
114108, 110, 111, 112, 113syl121anc 1243 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  =  ( ( p  pCnt  ( abs `  A ) )  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
115 simplll 533 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  e.  ZZ )
116 zq 9629 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ZZ  ->  A  e.  QQ )
117115, 116syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  e.  QQ )
118 pcabs 12328 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  A  e.  QQ )  ->  (
p  pCnt  ( abs `  A ) )  =  ( p  pCnt  A
) )
119108, 117, 118syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( abs `  A ) )  =  ( p  pCnt  A
) )
120119oveq1d 5893 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( abs `  A ) )  -  ( p  pCnt  ( A  gcd  B ) ) )  =  ( ( p  pCnt  A
)  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
121114, 120eqtrd 2210 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  =  ( ( p  pCnt  A )  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
122 simprr 531 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) )
12389adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  NN )
124 pcelnn 12323 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  NN )  -> 
( ( p  pCnt  ( ( abs `  A
)  /  ( A  gcd  B ) ) )  e.  NN  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) ) )
125108, 123, 124syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  (
( abs `  A
)  /  ( A  gcd  B ) ) )  e.  NN  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) ) )
126122, 125mpbird 167 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  e.  NN )
127121, 126eqeltrrd 2255 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  -  ( p 
pCnt  ( A  gcd  B ) ) )  e.  NN )
128108, 112pccld 12303 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  e. 
NN0 )
129128nn0zd 9376 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  e.  ZZ )
130 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  =/=  0 )
131 pczcl 12301 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( p  pCnt  A
)  e.  NN0 )
132108, 115, 130, 131syl12anc 1236 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  NN0 )
133132nn0zd 9376 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  ZZ )
134 znnsub 9307 . . . . . . . . . . . . . 14  |-  ( ( ( p  pCnt  ( A  gcd  B ) )  e.  ZZ  /\  (
p  pCnt  A )  e.  ZZ )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  ( ( p 
pCnt  A )  -  (
p  pCnt  ( A  gcd  B ) ) )  e.  NN ) )
135129, 133, 134syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  ( ( p 
pCnt  A )  -  (
p  pCnt  ( A  gcd  B ) ) )  e.  NN ) )
136127, 135mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  < 
( p  pCnt  A
) )
137 zltnle 9302 . . . . . . . . . . . . 13  |-  ( ( ( p  pCnt  ( A  gcd  B ) )  e.  ZZ  /\  (
p  pCnt  A )  e.  ZZ )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  -.  ( p  pCnt  A )  <_  (
p  pCnt  ( A  gcd  B ) ) ) )
138129, 133, 137syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  -.  ( p  pCnt  A )  <_  (
p  pCnt  ( A  gcd  B ) ) ) )
139136, 138mpbid 147 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  ( A  gcd  B ) ) )
140132nn0red 9233 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  RR )
141 simpllr 534 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  B  e.  ZZ )
142 nprmdvds1 12143 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  -.  p  ||  1 )
143142ad2antrl 490 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  p  ||  1 )
144 gcdid0 11984 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
145115, 144syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( A  gcd  0 )  =  ( abs `  A
) )
146145oveq2d 5894 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  0 ) )  =  ( ( abs `  A )  /  ( abs `  A ) ) )
14796adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  CC )
148109nnap0d 8968 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A ) #  0 )
149147, 148dividapd 8746 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( abs `  A ) )  =  1 )
150146, 149eqtrd 2210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  0 ) )  =  1 )
151150breq2d 4017 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  0
) )  <->  p  ||  1
) )
152143, 151mtbird 673 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  p  ||  ( ( abs `  A )  /  ( A  gcd  0 ) ) )
153 oveq2 5886 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
154153oveq2d 5894 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  0  ->  (
( abs `  A
)  /  ( A  gcd  B ) )  =  ( ( abs `  A )  /  ( A  gcd  0 ) ) )
155154breq2d 4017 . . . . . . . . . . . . . . . . . 18  |-  ( B  =  0  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  B
) )  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  0 ) ) ) )
156122, 155syl5ibcom 155 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( B  =  0  ->  p 
||  ( ( abs `  A )  /  ( A  gcd  0 ) ) ) )
157156necon3bd 2390 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( -.  p  ||  ( ( abs `  A )  /  ( A  gcd  0 ) )  ->  B  =/=  0 ) )
158152, 157mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  B  =/=  0 )
159108, 141, 158, 33syl12anc 1236 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  B )  e.  NN0 )
160159nn0red 9233 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  B )  e.  RR )
161 lemininf 11245 . . . . . . . . . . . . 13  |-  ( ( ( p  pCnt  A
)  e.  RR  /\  ( p  pCnt  A )  e.  RR  /\  (
p  pCnt  B )  e.  RR )  ->  (
( p  pCnt  A
)  <_ inf ( {
( p  pCnt  A
) ,  ( p 
pCnt  B ) } ,  RR ,  <  )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
162140, 140, 160, 161syl3anc 1238 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_ inf ( {
( p  pCnt  A
) ,  ( p 
pCnt  B ) } ,  RR ,  <  )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
163 pcgcd 12331 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
p  pCnt  ( A  gcd  B ) )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
164108, 115, 141, 163syl3anc 1238 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
165159nn0zd 9376 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  B )  e.  ZZ )
166 2zinfmin 11254 . . . . . . . . . . . . . . 15  |-  ( ( ( p  pCnt  A
)  e.  ZZ  /\  ( p  pCnt  B )  e.  ZZ )  -> inf ( { ( p  pCnt  A ) ,  ( p 
pCnt  B ) } ,  RR ,  <  )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
167133, 165, 166syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  -> inf ( { ( p  pCnt  A
) ,  ( p 
pCnt  B ) } ,  RR ,  <  )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
168164, 167eqtr4d 2213 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  = inf ( { ( p 
pCnt  A ) ,  ( p  pCnt  B ) } ,  RR ,  <  ) )
169168breq2d 4017 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  ( A  gcd  B
) )  <->  ( p  pCnt  A )  <_ inf ( { ( p  pCnt  A
) ,  ( p 
pCnt  B ) } ,  RR ,  <  ) ) )
170140leidd 8474 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  A
) )
171170biantrurd 305 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
172162, 169, 1713bitr4rd 221 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( p  pCnt  A )  <_  (
p  pCnt  ( A  gcd  B ) ) ) )
173139, 172mtbird 673 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
174173expr 375 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  B
) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
175174reximdva 2579 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( E. p  e.  Prime  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) )  ->  E. p  e.  Prime  -.  ( p  pCnt  A
)  <_  ( p  pCnt  B ) ) )
176 rexnalim 2466 . . . . . . . 8  |-  ( E. p  e.  Prime  -.  (
p  pCnt  A )  <_  ( p  pCnt  B
)  ->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
177107, 175, 176syl56 34 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
)  ->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
178106, 177orim12d 786 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( ( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) )  ->  ( A  ||  B  \/  -.  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) ) )
17991, 178mpd 13 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  ||  B  \/  -.  A. p  e.  Prime  ( p 
pCnt  A )  <_  (
p  pCnt  B )
) )
180179ord 724 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( -.  A  ||  B  ->  -.  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
181 condc 853 . . . 4  |-  (DECID  A  ||  B  ->  ( ( -.  A  ||  B  ->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
) )  ->  ( A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
)  ->  A  ||  B
) ) )
18257, 180, 181sylc 62 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A. p  e.  Prime  ( p 
pCnt  A )  <_  (
p  pCnt  B )  ->  A  ||  B ) )
183 0zd 9268 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  0  e.  ZZ )
184 zdceq 9331 . . . . 5  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  =  0 )
18562, 183, 184syl2anc 411 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  =  0 )
186 dcne 2358 . . . 4  |-  (DECID  A  =  0  <->  ( A  =  0  \/  A  =/=  0 ) )
187185, 186sylib 122 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  =  0  \/  A  =/=  0
) )
18855, 182, 187mpjaodan 798 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A. p  e. 
Prime  ( p  pCnt  A
)  <_  ( p  pCnt  B )  ->  A  ||  B ) )
1894, 188impbid 129 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456   ifcif 3536   {cpr 3595   class class class wbr 4005   ` cfv 5218  (class class class)co 5878  infcinf 6985   CCcc 7812   RRcr 7813   0cc0 7814   1c1 7815    x. cmul 7819   +oocpnf 7992   RR*cxr 7994    < clt 7995    <_ cle 7996    - cmin 8131    / cdiv 8632   NNcn 8922   2c2 8973   NN0cn0 9179   ZZcz 9256   ZZ>=cuz 9531   QQcq 9622   abscabs 11009    || cdvds 11797    gcd cgcd 11946   Primecprime 12110    pCnt cpc 12287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-1o 6420  df-2o 6421  df-er 6538  df-en 6744  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-xnn0 9243  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-fz 10012  df-fzo 10146  df-fl 10273  df-mod 10326  df-seqfrec 10449  df-exp 10523  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-dvds 11798  df-gcd 11947  df-prm 12111  df-pc 12288
This theorem is referenced by:  pc11  12333  pcz  12334  pcprmpw2  12335  pockthg  12358
  Copyright terms: Public domain W3C validator