| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riin0 | GIF version | ||
| Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| riin0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iineq1 3941 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑥 ∈ 𝑋 𝑆 = ∩ 𝑥 ∈ ∅ 𝑆) | |
| 2 | 1 | ineq2d 3374 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆)) |
| 3 | 0iin 3986 | . . . 4 ⊢ ∩ 𝑥 ∈ ∅ 𝑆 = V | |
| 4 | 3 | ineq2i 3371 | . . 3 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆) = (𝐴 ∩ V) |
| 5 | inv1 3497 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
| 6 | 4, 5 | eqtri 2226 | . 2 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆) = 𝐴 |
| 7 | 2, 6 | eqtrdi 2254 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 Vcvv 2772 ∩ cin 3165 ∅c0 3460 ∩ ciin 3928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 df-iin 3930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |