ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riin0 GIF version

Theorem riin0 4013
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riin0 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riin0
StepHypRef Expression
1 iineq1 3955 . . 3 (𝑋 = ∅ → 𝑥𝑋 𝑆 = 𝑥 ∈ ∅ 𝑆)
21ineq2d 3382 . 2 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = (𝐴 𝑥 ∈ ∅ 𝑆))
3 0iin 4000 . . . 4 𝑥 ∈ ∅ 𝑆 = V
43ineq2i 3379 . . 3 (𝐴 𝑥 ∈ ∅ 𝑆) = (𝐴 ∩ V)
5 inv1 3505 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2228 . 2 (𝐴 𝑥 ∈ ∅ 𝑆) = 𝐴
72, 6eqtrdi 2256 1 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  Vcvv 2776  cin 3173  c0 3468   ciin 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-iin 3944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator