Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riin0 | GIF version |
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
riin0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iineq1 3863 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑥 ∈ 𝑋 𝑆 = ∩ 𝑥 ∈ ∅ 𝑆) | |
2 | 1 | ineq2d 3308 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆)) |
3 | 0iin 3907 | . . . 4 ⊢ ∩ 𝑥 ∈ ∅ 𝑆 = V | |
4 | 3 | ineq2i 3305 | . . 3 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆) = (𝐴 ∩ V) |
5 | inv1 3430 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
6 | 4, 5 | eqtri 2178 | . 2 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆) = 𝐴 |
7 | 2, 6 | eqtrdi 2206 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 Vcvv 2712 ∩ cin 3101 ∅c0 3394 ∩ ciin 3850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3395 df-iin 3852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |