![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riin0 | GIF version |
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
riin0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iineq1 3912 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑥 ∈ 𝑋 𝑆 = ∩ 𝑥 ∈ ∅ 𝑆) | |
2 | 1 | ineq2d 3348 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆)) |
3 | 0iin 3957 | . . . 4 ⊢ ∩ 𝑥 ∈ ∅ 𝑆 = V | |
4 | 3 | ineq2i 3345 | . . 3 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆) = (𝐴 ∩ V) |
5 | inv1 3471 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
6 | 4, 5 | eqtri 2208 | . 2 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆) = 𝐴 |
7 | 2, 6 | eqtrdi 2236 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 Vcvv 2749 ∩ cin 3140 ∅c0 3434 ∩ ciin 3899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-v 2751 df-dif 3143 df-in 3147 df-ss 3154 df-nul 3435 df-iin 3901 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |