ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinm GIF version

Theorem riinm 4038
Description: Relative intersection of an inhabited family. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
riinm ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riinm
StepHypRef Expression
1 incom 3396 . 2 (𝐴 𝑥𝑋 𝑆) = ( 𝑥𝑋 𝑆𝐴)
2 r19.2m 3578 . . . . 5 ((∃𝑥 𝑥𝑋 ∧ ∀𝑥𝑋 𝑆𝐴) → ∃𝑥𝑋 𝑆𝐴)
32ancoms 268 . . . 4 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → ∃𝑥𝑋 𝑆𝐴)
4 iinss 4017 . . . 4 (∃𝑥𝑋 𝑆𝐴 𝑥𝑋 𝑆𝐴)
53, 4syl 14 . . 3 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → 𝑥𝑋 𝑆𝐴)
6 df-ss 3210 . . 3 ( 𝑥𝑋 𝑆𝐴 ↔ ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
75, 6sylib 122 . 2 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
81, 7eqtrid 2274 1 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  cin 3196  wss 3197   ciin 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-iin 3968
This theorem is referenced by:  riinerm  6755
  Copyright terms: Public domain W3C validator