ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinm GIF version

Theorem riinm 3985
Description: Relative intersection of an inhabited family. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
riinm ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riinm
StepHypRef Expression
1 incom 3351 . 2 (𝐴 𝑥𝑋 𝑆) = ( 𝑥𝑋 𝑆𝐴)
2 r19.2m 3533 . . . . 5 ((∃𝑥 𝑥𝑋 ∧ ∀𝑥𝑋 𝑆𝐴) → ∃𝑥𝑋 𝑆𝐴)
32ancoms 268 . . . 4 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → ∃𝑥𝑋 𝑆𝐴)
4 iinss 3964 . . . 4 (∃𝑥𝑋 𝑆𝐴 𝑥𝑋 𝑆𝐴)
53, 4syl 14 . . 3 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → 𝑥𝑋 𝑆𝐴)
6 df-ss 3166 . . 3 ( 𝑥𝑋 𝑆𝐴 ↔ ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
75, 6sylib 122 . 2 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
81, 7eqtrid 2238 1 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  cin 3152  wss 3153   ciin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-iin 3915
This theorem is referenced by:  riinerm  6662
  Copyright terms: Public domain W3C validator