![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riinm | GIF version |
Description: Relative intersection of an inhabited family. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
riinm | ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3207 | . 2 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) | |
2 | r19.2m 3388 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) → ∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) | |
3 | 2 | ancoms 265 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) |
4 | iinss 3803 | . . . 4 ⊢ (∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) |
6 | df-ss 3026 | . . 3 ⊢ (∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ↔ (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) = ∩ 𝑥 ∈ 𝑋 𝑆) | |
7 | 5, 6 | sylib 121 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) = ∩ 𝑥 ∈ 𝑋 𝑆) |
8 | 1, 7 | syl5eq 2139 | 1 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∃wex 1433 ∈ wcel 1445 ∀wral 2370 ∃wrex 2371 ∩ cin 3012 ⊆ wss 3013 ∩ ciin 3753 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-in 3019 df-ss 3026 df-iin 3755 |
This theorem is referenced by: riinerm 6405 |
Copyright terms: Public domain | W3C validator |