ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinm GIF version

Theorem riinm 3945
Description: Relative intersection of an inhabited family. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
riinm ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riinm
StepHypRef Expression
1 incom 3319 . 2 (𝐴 𝑥𝑋 𝑆) = ( 𝑥𝑋 𝑆𝐴)
2 r19.2m 3501 . . . . 5 ((∃𝑥 𝑥𝑋 ∧ ∀𝑥𝑋 𝑆𝐴) → ∃𝑥𝑋 𝑆𝐴)
32ancoms 266 . . . 4 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → ∃𝑥𝑋 𝑆𝐴)
4 iinss 3924 . . . 4 (∃𝑥𝑋 𝑆𝐴 𝑥𝑋 𝑆𝐴)
53, 4syl 14 . . 3 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → 𝑥𝑋 𝑆𝐴)
6 df-ss 3134 . . 3 ( 𝑥𝑋 𝑆𝐴 ↔ ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
75, 6sylib 121 . 2 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
81, 7eqtrid 2215 1 ((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  cin 3120  wss 3121   ciin 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-iin 3876
This theorem is referenced by:  riinerm  6586
  Copyright terms: Public domain W3C validator