Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riinm | GIF version |
Description: Relative intersection of an inhabited family. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
riinm | ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3314 | . 2 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) | |
2 | r19.2m 3495 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) → ∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) | |
3 | 2 | ancoms 266 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) |
4 | iinss 3917 | . . . 4 ⊢ (∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) |
6 | df-ss 3129 | . . 3 ⊢ (∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ↔ (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) = ∩ 𝑥 ∈ 𝑋 𝑆) | |
7 | 5, 6 | sylib 121 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) = ∩ 𝑥 ∈ 𝑋 𝑆) |
8 | 1, 7 | syl5eq 2211 | 1 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 ∩ cin 3115 ⊆ wss 3116 ∩ ciin 3867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-iin 3869 |
This theorem is referenced by: riinerm 6574 |
Copyright terms: Public domain | W3C validator |