ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinerm Unicode version

Theorem riinerm 6621
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riinerm  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B )
Distinct variable groups:    x, A    x, B    y, A
Allowed substitution hints:    B( y)    R( x, y)

Proof of Theorem riinerm
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 iinerm 6620 . 2  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  |^|_ x  e.  A  R  Er  B )
2 eleq1 2250 . . . . . 6  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
32cbvexv 1928 . . . . 5  |-  ( E. x  x  e.  A  <->  E. a  a  e.  A
)
4 eleq1 2250 . . . . . 6  |-  ( a  =  y  ->  (
a  e.  A  <->  y  e.  A ) )
54cbvexv 1928 . . . . 5  |-  ( E. a  a  e.  A  <->  E. y  y  e.  A
)
63, 5bitri 184 . . . 4  |-  ( E. x  x  e.  A  <->  E. y  y  e.  A
)
7 erssxp 6571 . . . . . . 7  |-  ( R  Er  B  ->  R  C_  ( B  X.  B
) )
87ralimi 2550 . . . . . 6  |-  ( A. x  e.  A  R  Er  B  ->  A. x  e.  A  R  C_  ( B  X.  B ) )
9 riinm 3971 . . . . . 6  |-  ( ( A. x  e.  A  R  C_  ( B  X.  B )  /\  E. x  x  e.  A
)  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R
)  =  |^|_ x  e.  A  R )
108, 9sylan 283 . . . . 5  |-  ( ( A. x  e.  A  R  Er  B  /\  E. x  x  e.  A
)  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R
)  =  |^|_ x  e.  A  R )
11 ereq1 6555 . . . . 5  |-  ( ( ( B  X.  B
)  i^i  |^|_ x  e.  A  R )  = 
|^|_ x  e.  A  R  ->  ( ( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_
x  e.  A  R  Er  B ) )
1210, 11syl 14 . . . 4  |-  ( ( A. x  e.  A  R  Er  B  /\  E. x  x  e.  A
)  ->  ( (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_ x  e.  A  R  Er  B )
)
136, 12sylan2br 288 . . 3  |-  ( ( A. x  e.  A  R  Er  B  /\  E. y  y  e.  A
)  ->  ( (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_ x  e.  A  R  Er  B )
)
1413ancoms 268 . 2  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  (
( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_ x  e.  A  R  Er  B
) )
151, 14mpbird 167 1  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363   E.wex 1502    e. wcel 2158   A.wral 2465    i^i cin 3140    C_ wss 3141   |^|_ciin 3899    X. cxp 4636    Er wer 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-iin 3901  df-br 4016  df-opab 4077  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-er 6548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator