ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinerm Unicode version

Theorem riinerm 6697
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riinerm  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B )
Distinct variable groups:    x, A    x, B    y, A
Allowed substitution hints:    B( y)    R( x, y)

Proof of Theorem riinerm
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 iinerm 6696 . 2  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  |^|_ x  e.  A  R  Er  B )
2 eleq1 2268 . . . . . 6  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
32cbvexv 1942 . . . . 5  |-  ( E. x  x  e.  A  <->  E. a  a  e.  A
)
4 eleq1 2268 . . . . . 6  |-  ( a  =  y  ->  (
a  e.  A  <->  y  e.  A ) )
54cbvexv 1942 . . . . 5  |-  ( E. a  a  e.  A  <->  E. y  y  e.  A
)
63, 5bitri 184 . . . 4  |-  ( E. x  x  e.  A  <->  E. y  y  e.  A
)
7 erssxp 6645 . . . . . . 7  |-  ( R  Er  B  ->  R  C_  ( B  X.  B
) )
87ralimi 2569 . . . . . 6  |-  ( A. x  e.  A  R  Er  B  ->  A. x  e.  A  R  C_  ( B  X.  B ) )
9 riinm 4000 . . . . . 6  |-  ( ( A. x  e.  A  R  C_  ( B  X.  B )  /\  E. x  x  e.  A
)  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R
)  =  |^|_ x  e.  A  R )
108, 9sylan 283 . . . . 5  |-  ( ( A. x  e.  A  R  Er  B  /\  E. x  x  e.  A
)  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R
)  =  |^|_ x  e.  A  R )
11 ereq1 6629 . . . . 5  |-  ( ( ( B  X.  B
)  i^i  |^|_ x  e.  A  R )  = 
|^|_ x  e.  A  R  ->  ( ( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_
x  e.  A  R  Er  B ) )
1210, 11syl 14 . . . 4  |-  ( ( A. x  e.  A  R  Er  B  /\  E. x  x  e.  A
)  ->  ( (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_ x  e.  A  R  Er  B )
)
136, 12sylan2br 288 . . 3  |-  ( ( A. x  e.  A  R  Er  B  /\  E. y  y  e.  A
)  ->  ( (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_ x  e.  A  R  Er  B )
)
1413ancoms 268 . 2  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  (
( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_ x  e.  A  R  Er  B
) )
151, 14mpbird 167 1  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484    i^i cin 3165    C_ wss 3166   |^|_ciin 3928    X. cxp 4674    Er wer 6619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-iin 3930  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-er 6622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator