ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota1a Unicode version

Theorem riota1a 5828
Description: Property of iota. (Contributed by NM, 23-Aug-2011.)
Assertion
Ref Expression
riota1a  |-  ( ( x  e.  A  /\  E! x  e.  A  ph )  ->  ( ph  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )

Proof of Theorem riota1a
StepHypRef Expression
1 ibar 299 . 2  |-  ( x  e.  A  ->  ( ph 
<->  ( x  e.  A  /\  ph ) ) )
2 df-reu 2455 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
3 iota1 5174 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
42, 3sylbi 120 . 2  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
51, 4sylan9bb 459 1  |-  ( ( x  e.  A  /\  E! x  e.  A  ph )  ->  ( ph  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E!weu 2019    e. wcel 2141   E!wreu 2450   iotacio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-reu 2455  df-v 2732  df-sbc 2956  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator