ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota1a Unicode version

Theorem riota1a 5897
Description: Property of iota. (Contributed by NM, 23-Aug-2011.)
Assertion
Ref Expression
riota1a  |-  ( ( x  e.  A  /\  E! x  e.  A  ph )  ->  ( ph  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )

Proof of Theorem riota1a
StepHypRef Expression
1 ibar 301 . 2  |-  ( x  e.  A  ->  ( ph 
<->  ( x  e.  A  /\  ph ) ) )
2 df-reu 2482 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
3 iota1 5233 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
42, 3sylbi 121 . 2  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
51, 4sylan9bb 462 1  |-  ( ( x  e.  A  /\  E! x  e.  A  ph )  ->  ( ph  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E!weu 2045    e. wcel 2167   E!wreu 2477   iotacio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-reu 2482  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840  df-iota 5219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator