ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota1a GIF version

Theorem riota1a 5852
Description: Property of iota. (Contributed by NM, 23-Aug-2011.)
Assertion
Ref Expression
riota1a ((𝑥𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))

Proof of Theorem riota1a
StepHypRef Expression
1 ibar 301 . 2 (𝑥𝐴 → (𝜑 ↔ (𝑥𝐴𝜑)))
2 df-reu 2462 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 iota1 5194 . . 3 (∃!𝑥(𝑥𝐴𝜑) → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
42, 3sylbi 121 . 2 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
51, 4sylan9bb 462 1 ((𝑥𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  ∃!weu 2026  wcel 2148  ∃!wreu 2457  cio 5178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-reu 2462  df-v 2741  df-sbc 2965  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812  df-iota 5180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator