ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlema Unicode version

Theorem acexmidlema 5935
Description: Lemma for acexmid 5943. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlema  |-  ( {
(/) }  e.  A  ->  ph )
Distinct variable groups:    x, A    x, B    x, C    ph, x

Proof of Theorem acexmidlema
StepHypRef Expression
1 acexmidlem.a . . . 4  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
21eleq2i 2272 . . 3  |-  ( {
(/) }  e.  A  <->  {
(/) }  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )
3 p0ex 4232 . . . . 5  |-  { (/) }  e.  _V
43prid2 3740 . . . 4  |-  { (/) }  e.  { (/) ,  { (/)
} }
5 eqeq1 2212 . . . . . 6  |-  ( x  =  { (/) }  ->  ( x  =  (/)  <->  { (/) }  =  (/) ) )
65orbi1d 793 . . . . 5  |-  ( x  =  { (/) }  ->  ( ( x  =  (/)  \/ 
ph )  <->  ( { (/)
}  =  (/)  \/  ph ) ) )
76elrab3 2930 . . . 4  |-  ( {
(/) }  e.  { (/) ,  { (/) } }  ->  ( { (/) }  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }  <->  ( { (/)
}  =  (/)  \/  ph ) ) )
84, 7ax-mp 5 . . 3  |-  ( {
(/) }  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } 
<->  ( { (/) }  =  (/) 
\/  ph ) )
92, 8bitri 184 . 2  |-  ( {
(/) }  e.  A  <->  ( { (/) }  =  (/)  \/ 
ph ) )
10 noel 3464 . . . 4  |-  -.  (/)  e.  (/)
11 0ex 4171 . . . . . 6  |-  (/)  e.  _V
1211snid 3664 . . . . 5  |-  (/)  e.  { (/)
}
13 eleq2 2269 . . . . 5  |-  ( {
(/) }  =  (/)  ->  ( (/) 
e.  { (/) }  <->  (/)  e.  (/) ) )
1412, 13mpbii 148 . . . 4  |-  ( {
(/) }  =  (/)  ->  (/)  e.  (/) )
1510, 14mto 664 . . 3  |-  -.  { (/)
}  =  (/)
16 orel1 727 . . 3  |-  ( -. 
{ (/) }  =  (/)  ->  ( ( { (/) }  =  (/)  \/  ph )  ->  ph ) )
1715, 16ax-mp 5 . 2  |-  ( ( { (/) }  =  (/)  \/ 
ph )  ->  ph )
189, 17sylbi 121 1  |-  ( {
(/) }  e.  A  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   {crab 2488   (/)c0 3460   {csn 3633   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640
This theorem is referenced by:  acexmidlem1  5940
  Copyright terms: Public domain W3C validator