| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlema | Unicode version | ||
| Description: Lemma for acexmid 5999. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlema |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acexmidlem.a |
. . . 4
| |
| 2 | 1 | eleq2i 2296 |
. . 3
|
| 3 | p0ex 4271 |
. . . . 5
| |
| 4 | 3 | prid2 3773 |
. . . 4
|
| 5 | eqeq1 2236 |
. . . . . 6
| |
| 6 | 5 | orbi1d 796 |
. . . . 5
|
| 7 | 6 | elrab3 2960 |
. . . 4
|
| 8 | 4, 7 | ax-mp 5 |
. . 3
|
| 9 | 2, 8 | bitri 184 |
. 2
|
| 10 | noel 3495 |
. . . 4
| |
| 11 | 0ex 4210 |
. . . . . 6
| |
| 12 | 11 | snid 3697 |
. . . . 5
|
| 13 | eleq2 2293 |
. . . . 5
| |
| 14 | 12, 13 | mpbii 148 |
. . . 4
|
| 15 | 10, 14 | mto 666 |
. . 3
|
| 16 | orel1 730 |
. . 3
| |
| 17 | 15, 16 | ax-mp 5 |
. 2
|
| 18 | 9, 17 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: acexmidlem1 5996 |
| Copyright terms: Public domain | W3C validator |