| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlema | Unicode version | ||
| Description: Lemma for acexmid 5966. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlema |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acexmidlem.a |
. . . 4
| |
| 2 | 1 | eleq2i 2274 |
. . 3
|
| 3 | p0ex 4248 |
. . . . 5
| |
| 4 | 3 | prid2 3750 |
. . . 4
|
| 5 | eqeq1 2214 |
. . . . . 6
| |
| 6 | 5 | orbi1d 793 |
. . . . 5
|
| 7 | 6 | elrab3 2937 |
. . . 4
|
| 8 | 4, 7 | ax-mp 5 |
. . 3
|
| 9 | 2, 8 | bitri 184 |
. 2
|
| 10 | noel 3472 |
. . . 4
| |
| 11 | 0ex 4187 |
. . . . . 6
| |
| 12 | 11 | snid 3674 |
. . . . 5
|
| 13 | eleq2 2271 |
. . . . 5
| |
| 14 | 12, 13 | mpbii 148 |
. . . 4
|
| 15 | 10, 14 | mto 664 |
. . 3
|
| 16 | orel1 727 |
. . 3
| |
| 17 | 15, 16 | ax-mp 5 |
. 2
|
| 18 | 9, 17 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: acexmidlem1 5963 |
| Copyright terms: Public domain | W3C validator |