| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > acexmidlema | Unicode version | ||
| Description: Lemma for acexmid 5921. (Contributed by Jim Kingdon, 6-Aug-2019.) | 
| Ref | Expression | 
|---|---|
| acexmidlem.a | 
 | 
| acexmidlem.b | 
 | 
| acexmidlem.c | 
 | 
| Ref | Expression | 
|---|---|
| acexmidlema | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | acexmidlem.a | 
. . . 4
 | |
| 2 | 1 | eleq2i 2263 | 
. . 3
 | 
| 3 | p0ex 4221 | 
. . . . 5
 | |
| 4 | 3 | prid2 3729 | 
. . . 4
 | 
| 5 | eqeq1 2203 | 
. . . . . 6
 | |
| 6 | 5 | orbi1d 792 | 
. . . . 5
 | 
| 7 | 6 | elrab3 2921 | 
. . . 4
 | 
| 8 | 4, 7 | ax-mp 5 | 
. . 3
 | 
| 9 | 2, 8 | bitri 184 | 
. 2
 | 
| 10 | noel 3454 | 
. . . 4
 | |
| 11 | 0ex 4160 | 
. . . . . 6
 | |
| 12 | 11 | snid 3653 | 
. . . . 5
 | 
| 13 | eleq2 2260 | 
. . . . 5
 | |
| 14 | 12, 13 | mpbii 148 | 
. . . 4
 | 
| 15 | 10, 14 | mto 663 | 
. . 3
 | 
| 16 | orel1 726 | 
. . 3
 | |
| 17 | 15, 16 | ax-mp 5 | 
. 2
 | 
| 18 | 9, 17 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: acexmidlem1 5918 | 
| Copyright terms: Public domain | W3C validator |