ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaund GIF version

Theorem riotaund 5991
Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
Assertion
Ref Expression
riotaund (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotaund
StepHypRef Expression
1 df-riota 5954 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 df-reu 2515 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 iotanul 5294 . . 3 (¬ ∃!𝑥(𝑥𝐴𝜑) → (℩𝑥(𝑥𝐴𝜑)) = ∅)
42, 3sylnbi 682 . 2 (¬ ∃!𝑥𝐴 𝜑 → (℩𝑥(𝑥𝐴𝜑)) = ∅)
51, 4eqtrid 2274 1 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1395  ∃!weu 2077  wcel 2200  ∃!wreu 2510  c0 3491  cio 5276  crio 5953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-uni 3889  df-iota 5278  df-riota 5954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator