ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv3 Unicode version

Theorem f1ocnvfv3 5880
Description: Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
f1ocnvfv3  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  =  (
iota_ x  e.  A  ( F `  x )  =  C ) )
Distinct variable groups:    x, A    x, B    x, C    x, F

Proof of Theorem f1ocnvfv3
StepHypRef Expression
1 f1ocnvdm 5798 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  e.  A
)
2 f1ocnvfvb 5797 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  x  e.  A  /\  C  e.  B )  ->  ( ( F `  x )  =  C  <-> 
( `' F `  C )  =  x ) )
323expa 1205 . . . . 5  |-  ( ( ( F : A -1-1-onto-> B  /\  x  e.  A
)  /\  C  e.  B )  ->  (
( F `  x
)  =  C  <->  ( `' F `  C )  =  x ) )
43an32s 568 . . . 4  |-  ( ( ( F : A -1-1-onto-> B  /\  C  e.  B
)  /\  x  e.  A )  ->  (
( F `  x
)  =  C  <->  ( `' F `  C )  =  x ) )
5 eqcom 2191 . . . 4  |-  ( x  =  ( `' F `  C )  <->  ( `' F `  C )  =  x )
64, 5bitr4di 198 . . 3  |-  ( ( ( F : A -1-1-onto-> B  /\  C  e.  B
)  /\  x  e.  A )  ->  (
( F `  x
)  =  C  <->  x  =  ( `' F `  C ) ) )
71, 6riota5 5872 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( iota_ x  e.  A  ( F `  x )  =  C )  =  ( `' F `  C ) )
87eqcomd 2195 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  =  (
iota_ x  e.  A  ( F `  x )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   `'ccnv 4640   -1-1-onto->wf1o 5230   ` cfv 5231   iota_crio 5846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator