ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv3 Unicode version

Theorem f1ocnvfv3 5933
Description: Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
f1ocnvfv3  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  =  (
iota_ x  e.  A  ( F `  x )  =  C ) )
Distinct variable groups:    x, A    x, B    x, C    x, F

Proof of Theorem f1ocnvfv3
StepHypRef Expression
1 f1ocnvdm 5850 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  e.  A
)
2 f1ocnvfvb 5849 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  x  e.  A  /\  C  e.  B )  ->  ( ( F `  x )  =  C  <-> 
( `' F `  C )  =  x ) )
323expa 1206 . . . . 5  |-  ( ( ( F : A -1-1-onto-> B  /\  x  e.  A
)  /\  C  e.  B )  ->  (
( F `  x
)  =  C  <->  ( `' F `  C )  =  x ) )
43an32s 568 . . . 4  |-  ( ( ( F : A -1-1-onto-> B  /\  C  e.  B
)  /\  x  e.  A )  ->  (
( F `  x
)  =  C  <->  ( `' F `  C )  =  x ) )
5 eqcom 2207 . . . 4  |-  ( x  =  ( `' F `  C )  <->  ( `' F `  C )  =  x )
64, 5bitr4di 198 . . 3  |-  ( ( ( F : A -1-1-onto-> B  /\  C  e.  B
)  /\  x  e.  A )  ->  (
( F `  x
)  =  C  <->  x  =  ( `' F `  C ) ) )
71, 6riota5 5925 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( iota_ x  e.  A  ( F `  x )  =  C )  =  ( `' F `  C ) )
87eqcomd 2211 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  =  (
iota_ x  e.  A  ( F `  x )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   `'ccnv 4674   -1-1-onto->wf1o 5270   ` cfv 5271   iota_crio 5898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator