ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpssre Unicode version

Theorem rpssre 9400
Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
Assertion
Ref Expression
rpssre  |-  RR+  C_  RR

Proof of Theorem rpssre
StepHypRef Expression
1 rpre 9396 . 2  |-  ( x  e.  RR+  ->  x  e.  RR )
21ssriv 3069 1  |-  RR+  C_  RR
Colors of variables: wff set class
Syntax hints:    C_ wss 3039   RRcr 7583   RR+crp 9390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-rab 2400  df-in 3045  df-ss 3052  df-rp 9391
This theorem is referenced by:  rpred  9429  rpexpcl  10252  resqrexlemcvg  10731  resqrexlemsqa  10736  fsumrpcl  11113
  Copyright terms: Public domain W3C validator