ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpssre Unicode version

Theorem rpssre 9730
Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
Assertion
Ref Expression
rpssre  |-  RR+  C_  RR

Proof of Theorem rpssre
StepHypRef Expression
1 rpre 9726 . 2  |-  ( x  e.  RR+  ->  x  e.  RR )
21ssriv 3183 1  |-  RR+  C_  RR
Colors of variables: wff set class
Syntax hints:    C_ wss 3153   RRcr 7871   RR+crp 9719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-in 3159  df-ss 3166  df-rp 9720
This theorem is referenced by:  rpred  9762  rpexpcl  10629  resqrexlemcvg  11163  resqrexlemsqa  11168  fsumrpcl  11547  fprodrpcl  11754
  Copyright terms: Public domain W3C validator