Theorem List for Intuitionistic Logic Explorer - 9601-9700 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | 7p6e13 9601 |
7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 7p7e14 9602 |
7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 8p2e10 9603 |
8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
  ;  |
| |
| Theorem | 8p3e11 9604 |
8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
  ;  |
| |
| Theorem | 8p4e12 9605 |
8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 8p5e13 9606 |
8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 8p6e14 9607 |
8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 8p7e15 9608 |
8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 8p8e16 9609 |
8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9p2e11 9610 |
9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
  ;  |
| |
| Theorem | 9p3e12 9611 |
9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9p4e13 9612 |
9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9p5e14 9613 |
9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9p6e15 9614 |
9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9p7e16 9615 |
9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9p8e17 9616 |
9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9p9e18 9617 |
9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 10p10e20 9618 |
10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
; ;  ;  |
| |
| Theorem | 10m1e9 9619 |
10 - 1 = 9. (Contributed by AV, 6-Sep-2021.)
|
;   |
| |
| Theorem | 4t3lem 9620 |
Lemma for 4t3e12 9621 and related theorems. (Contributed by Mario
Carneiro, 19-Apr-2015.)
|
     
   |
| |
| Theorem | 4t3e12 9621 |
4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 4t4e16 9622 |
4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 5t2e10 9623 |
5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV,
4-Sep-2021.)
|
  ;  |
| |
| Theorem | 5t3e15 9624 |
5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
  ;  |
| |
| Theorem | 5t4e20 9625 |
5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
  ;  |
| |
| Theorem | 5t5e25 9626 |
5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
  ;  |
| |
| Theorem | 6t2e12 9627 |
6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 6t3e18 9628 |
6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 6t4e24 9629 |
6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 6t5e30 9630 |
6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
  ;  |
| |
| Theorem | 6t6e36 9631 |
6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
  ;  |
| |
| Theorem | 7t2e14 9632 |
7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 7t3e21 9633 |
7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 7t4e28 9634 |
7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 7t5e35 9635 |
7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 7t6e42 9636 |
7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 7t7e49 9637 |
7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 8t2e16 9638 |
8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 8t3e24 9639 |
8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 8t4e32 9640 |
8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 8t5e40 9641 |
8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
  ;  |
| |
| Theorem | 8t6e48 9642 |
8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
  ;  |
| |
| Theorem | 8t7e56 9643 |
8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 8t8e64 9644 |
8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9t2e18 9645 |
9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9t3e27 9646 |
9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9t4e36 9647 |
9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9t5e45 9648 |
9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9t6e54 9649 |
9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9t7e63 9650 |
9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9t8e72 9651 |
9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9t9e81 9652 |
9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
  ;  |
| |
| Theorem | 9t11e99 9653 |
9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV,
6-Sep-2021.)
|
 ;  ;  |
| |
| Theorem | 9lt10 9654 |
9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
;  |
| |
| Theorem | 8lt10 9655 |
8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
;  |
| |
| Theorem | 7lt10 9656 |
7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
;  |
| |
| Theorem | 6lt10 9657 |
6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
;  |
| |
| Theorem | 5lt10 9658 |
5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
;  |
| |
| Theorem | 4lt10 9659 |
4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
;  |
| |
| Theorem | 3lt10 9660 |
3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
;  |
| |
| Theorem | 2lt10 9661 |
2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
;  |
| |
| Theorem | 1lt10 9662 |
1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario
Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
|
;  |
| |
| Theorem | decbin0 9663 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
 
     |
| |
| Theorem | decbin2 9664 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
           |
| |
| Theorem | decbin3 9665 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
             |
| |
| Theorem | halfthird 9666 |
Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.)
|
   
     |
| |
| Theorem | 5recm6rec 9667 |
One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
|
   
   ;   |
| |
| 4.4.11 Upper sets of integers
|
| |
| Syntax | cuz 9668 |
Extend class notation with the upper integer function.
Read "  " as "the
set of integers greater than or equal to
".
|
 |
| |
| Definition | df-uz 9669* |
Define a function whose value at is the semi-infinite set of
contiguous integers starting at , which we will also call the
upper integers starting at . Read "  " as "the
set
of integers greater than or equal to ". See uzval 9670 for its
value, uzssz 9688 for its relationship to , nnuz 9704
and nn0uz 9703 for
its relationships to and , and eluz1 9672 and eluz2 9674 for
its membership relations. (Contributed by NM, 5-Sep-2005.)
|
 
   |
| |
| Theorem | uzval 9670* |
The value of the upper integers function. (Contributed by NM,
5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
     
   |
| |
| Theorem | uzf 9671 |
The domain and codomain of the upper integers function. (Contributed by
Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
      |
| |
| Theorem | eluz1 9672 |
Membership in the upper set of integers starting at .
(Contributed by NM, 5-Sep-2005.)
|
           |
| |
| Theorem | eluzel2 9673 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
    
  |
| |
| Theorem | eluz2 9674 |
Membership in an upper set of integers. We use the fact that a
function's value (under our function value definition) is empty outside
of its domain to show . (Contributed by NM,
5-Sep-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
     
   |
| |
| Theorem | eluz1i 9675 |
Membership in an upper set of integers. (Contributed by NM,
5-Sep-2005.)
|
         |
| |
| Theorem | eluzuzle 9676 |
An integer in an upper set of integers is an element of an upper set of
integers with a smaller bound. (Contributed by Alexander van der Vekens,
17-Jun-2018.)
|
               |
| |
| Theorem | eluzelz 9677 |
A member of an upper set of integers is an integer. (Contributed by NM,
6-Sep-2005.)
|
    
  |
| |
| Theorem | eluzelre 9678 |
A member of an upper set of integers is a real. (Contributed by Mario
Carneiro, 31-Aug-2013.)
|
    
  |
| |
| Theorem | eluzelcn 9679 |
A member of an upper set of integers is a complex number. (Contributed by
Glauco Siliprandi, 29-Jun-2017.)
|
    
  |
| |
| Theorem | eluzle 9680 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.)
|
       |
| |
| Theorem | eluz 9681 |
Membership in an upper set of integers. (Contributed by NM,
2-Oct-2005.)
|
           |
| |
| Theorem | uzid 9682 |
Membership of the least member in an upper set of integers. (Contributed
by NM, 2-Sep-2005.)
|
       |
| |
| Theorem | uzidd 9683 |
Membership of the least member in an upper set of integers.
(Contributed by Glauco Siliprandi, 23-Oct-2021.)
|
         |
| |
| Theorem | uzn0 9684 |
The upper integers are all nonempty. (Contributed by Mario Carneiro,
16-Jan-2014.)
|
   |
| |
| Theorem | uztrn 9685 |
Transitive law for sets of upper integers. (Contributed by NM,
20-Sep-2005.)
|
          
      |
| |
| Theorem | uztrn2 9686 |
Transitive law for sets of upper integers. (Contributed by Mario
Carneiro, 26-Dec-2013.)
|
             |
| |
| Theorem | uzneg 9687 |
Contraposition law for upper integers. (Contributed by NM,
28-Nov-2005.)
|
             |
| |
| Theorem | uzssz 9688 |
An upper set of integers is a subset of all integers. (Contributed by
NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
     |
| |
| Theorem | uzss 9689 |
Subset relationship for two sets of upper integers. (Contributed by NM,
5-Sep-2005.)
|
               |
| |
| Theorem | uztric 9690 |
Trichotomy of the ordering relation on integers, stated in terms of upper
integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro,
25-Jun-2013.)
|
               |
| |
| Theorem | uz11 9691 |
The upper integers function is one-to-one. (Contributed by NM,
12-Dec-2005.)
|
     
   
   |
| |
| Theorem | eluzp1m1 9692 |
Membership in the next upper set of integers. (Contributed by NM,
12-Sep-2005.)
|
                 |
| |
| Theorem | eluzp1l 9693 |
Strict ordering implied by membership in the next upper set of integers.
(Contributed by NM, 12-Sep-2005.)
|
           |
| |
| Theorem | eluzp1p1 9694 |
Membership in the next upper set of integers. (Contributed by NM,
5-Oct-2005.)
|
     
    
    |
| |
| Theorem | eluzaddi 9695 |
Membership in a later upper set of integers. (Contributed by Paul
Chapman, 22-Nov-2007.)
|
     

   
    |
| |
| Theorem | eluzsubi 9696 |
Membership in an earlier upper set of integers. (Contributed by Paul
Chapman, 22-Nov-2007.)
|
       

      |
| |
| Theorem | eluzadd 9697 |
Membership in a later upper set of integers. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
        
   
    |
| |
| Theorem | eluzsub 9698 |
Membership in an earlier upper set of integers. (Contributed by Jeff
Madsen, 2-Sep-2009.)
|
     
   

      |
| |
| Theorem | uzm1 9699 |
Choices for an element of an upper interval of integers. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
     
         |
| |
| Theorem | uznn0sub 9700 |
The nonnegative difference of integers is a nonnegative integer.
(Contributed by NM, 4-Sep-2005.)
|
     

  |