Theorem List for Intuitionistic Logic Explorer - 9601-9700 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | decbin0 9601 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
 
     |
| |
| Theorem | decbin2 9602 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
           |
| |
| Theorem | decbin3 9603 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
             |
| |
| Theorem | halfthird 9604 |
Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.)
|
   
     |
| |
| Theorem | 5recm6rec 9605 |
One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
|
   
   ;   |
| |
| 4.4.11 Upper sets of integers
|
| |
| Syntax | cuz 9606 |
Extend class notation with the upper integer function.
Read "  " as "the
set of integers greater than or equal to
".
|
 |
| |
| Definition | df-uz 9607* |
Define a function whose value at is the semi-infinite set of
contiguous integers starting at , which we will also call the
upper integers starting at . Read "  " as "the
set
of integers greater than or equal to ". See uzval 9608 for its
value, uzssz 9626 for its relationship to , nnuz 9642
and nn0uz 9641 for
its relationships to and , and eluz1 9610 and eluz2 9612 for
its membership relations. (Contributed by NM, 5-Sep-2005.)
|
 
   |
| |
| Theorem | uzval 9608* |
The value of the upper integers function. (Contributed by NM,
5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
     
   |
| |
| Theorem | uzf 9609 |
The domain and codomain of the upper integers function. (Contributed by
Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
      |
| |
| Theorem | eluz1 9610 |
Membership in the upper set of integers starting at .
(Contributed by NM, 5-Sep-2005.)
|
           |
| |
| Theorem | eluzel2 9611 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
    
  |
| |
| Theorem | eluz2 9612 |
Membership in an upper set of integers. We use the fact that a
function's value (under our function value definition) is empty outside
of its domain to show . (Contributed by NM,
5-Sep-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
     
   |
| |
| Theorem | eluz1i 9613 |
Membership in an upper set of integers. (Contributed by NM,
5-Sep-2005.)
|
         |
| |
| Theorem | eluzuzle 9614 |
An integer in an upper set of integers is an element of an upper set of
integers with a smaller bound. (Contributed by Alexander van der Vekens,
17-Jun-2018.)
|
               |
| |
| Theorem | eluzelz 9615 |
A member of an upper set of integers is an integer. (Contributed by NM,
6-Sep-2005.)
|
    
  |
| |
| Theorem | eluzelre 9616 |
A member of an upper set of integers is a real. (Contributed by Mario
Carneiro, 31-Aug-2013.)
|
    
  |
| |
| Theorem | eluzelcn 9617 |
A member of an upper set of integers is a complex number. (Contributed by
Glauco Siliprandi, 29-Jun-2017.)
|
    
  |
| |
| Theorem | eluzle 9618 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.)
|
       |
| |
| Theorem | eluz 9619 |
Membership in an upper set of integers. (Contributed by NM,
2-Oct-2005.)
|
           |
| |
| Theorem | uzid 9620 |
Membership of the least member in an upper set of integers. (Contributed
by NM, 2-Sep-2005.)
|
       |
| |
| Theorem | uzidd 9621 |
Membership of the least member in an upper set of integers.
(Contributed by Glauco Siliprandi, 23-Oct-2021.)
|
         |
| |
| Theorem | uzn0 9622 |
The upper integers are all nonempty. (Contributed by Mario Carneiro,
16-Jan-2014.)
|
   |
| |
| Theorem | uztrn 9623 |
Transitive law for sets of upper integers. (Contributed by NM,
20-Sep-2005.)
|
          
      |
| |
| Theorem | uztrn2 9624 |
Transitive law for sets of upper integers. (Contributed by Mario
Carneiro, 26-Dec-2013.)
|
             |
| |
| Theorem | uzneg 9625 |
Contraposition law for upper integers. (Contributed by NM,
28-Nov-2005.)
|
             |
| |
| Theorem | uzssz 9626 |
An upper set of integers is a subset of all integers. (Contributed by
NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
     |
| |
| Theorem | uzss 9627 |
Subset relationship for two sets of upper integers. (Contributed by NM,
5-Sep-2005.)
|
               |
| |
| Theorem | uztric 9628 |
Trichotomy of the ordering relation on integers, stated in terms of upper
integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro,
25-Jun-2013.)
|
               |
| |
| Theorem | uz11 9629 |
The upper integers function is one-to-one. (Contributed by NM,
12-Dec-2005.)
|
     
   
   |
| |
| Theorem | eluzp1m1 9630 |
Membership in the next upper set of integers. (Contributed by NM,
12-Sep-2005.)
|
                 |
| |
| Theorem | eluzp1l 9631 |
Strict ordering implied by membership in the next upper set of integers.
(Contributed by NM, 12-Sep-2005.)
|
           |
| |
| Theorem | eluzp1p1 9632 |
Membership in the next upper set of integers. (Contributed by NM,
5-Oct-2005.)
|
     
    
    |
| |
| Theorem | eluzaddi 9633 |
Membership in a later upper set of integers. (Contributed by Paul
Chapman, 22-Nov-2007.)
|
     

   
    |
| |
| Theorem | eluzsubi 9634 |
Membership in an earlier upper set of integers. (Contributed by Paul
Chapman, 22-Nov-2007.)
|
       

      |
| |
| Theorem | eluzadd 9635 |
Membership in a later upper set of integers. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
        
   
    |
| |
| Theorem | eluzsub 9636 |
Membership in an earlier upper set of integers. (Contributed by Jeff
Madsen, 2-Sep-2009.)
|
     
   

      |
| |
| Theorem | uzm1 9637 |
Choices for an element of an upper interval of integers. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
     
         |
| |
| Theorem | uznn0sub 9638 |
The nonnegative difference of integers is a nonnegative integer.
(Contributed by NM, 4-Sep-2005.)
|
     

  |
| |
| Theorem | uzin 9639 |
Intersection of two upper intervals of integers. (Contributed by Mario
Carneiro, 24-Dec-2013.)
|
       
                |
| |
| Theorem | uzp1 9640 |
Choices for an element of an upper interval of integers. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
     
   
     |
| |
| Theorem | nn0uz 9641 |
Nonnegative integers expressed as an upper set of integers. (Contributed
by NM, 2-Sep-2005.)
|
     |
| |
| Theorem | nnuz 9642 |
Positive integers expressed as an upper set of integers. (Contributed by
NM, 2-Sep-2005.)
|
     |
| |
| Theorem | elnnuz 9643 |
A positive integer expressed as a member of an upper set of integers.
(Contributed by NM, 6-Jun-2006.)
|
       |
| |
| Theorem | elnn0uz 9644 |
A nonnegative integer expressed as a member an upper set of integers.
(Contributed by NM, 6-Jun-2006.)
|
       |
| |
| Theorem | eluz2nn 9645 |
An integer is greater than or equal to 2 is a positive integer.
(Contributed by AV, 3-Nov-2018.)
|
    
  |
| |
| Theorem | eluz4eluz2 9646 |
An integer greater than or equal to 4 is an integer greater than or equal
to 2. (Contributed by AV, 30-May-2023.)
|
    
      |
| |
| Theorem | eluz4nn 9647 |
An integer greater than or equal to 4 is a positive integer. (Contributed
by AV, 30-May-2023.)
|
    
  |
| |
| Theorem | eluzge2nn0 9648 |
If an integer is greater than or equal to 2, then it is a nonnegative
integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV,
3-Nov-2018.)
|
    
  |
| |
| Theorem | eluz2n0 9649 |
An integer greater than or equal to 2 is not 0. (Contributed by AV,
25-May-2020.)
|
       |
| |
| Theorem | uzuzle23 9650 |
An integer in the upper set of integers starting at 3 is element of the
upper set of integers starting at 2. (Contributed by Alexander van der
Vekens, 17-Sep-2018.)
|
    
      |
| |
| Theorem | eluzge3nn 9651 |
If an integer is greater than 3, then it is a positive integer.
(Contributed by Alexander van der Vekens, 17-Sep-2018.)
|
    
  |
| |
| Theorem | uz3m2nn 9652 |
An integer greater than or equal to 3 decreased by 2 is a positive
integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
|
     
   |
| |
| Theorem | 1eluzge0 9653 |
1 is an integer greater than or equal to 0. (Contributed by Alexander van
der Vekens, 8-Jun-2018.)
|
     |
| |
| Theorem | 2eluzge0 9654 |
2 is an integer greater than or equal to 0. (Contributed by Alexander van
der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
|
     |
| |
| Theorem | 2eluzge1 9655 |
2 is an integer greater than or equal to 1. (Contributed by Alexander van
der Vekens, 8-Jun-2018.)
|
     |
| |
| Theorem | uznnssnn 9656 |
The upper integers starting from a natural are a subset of the naturals.
(Contributed by Scott Fenton, 29-Jun-2013.)
|
       |
| |
| Theorem | raluz 9657* |
Restricted universal quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
         
    |
| |
| Theorem | raluz2 9658* |
Restricted universal quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
         
    |
| |
| Theorem | rexuz 9659* |
Restricted existential quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
         
    |
| |
| Theorem | rexuz2 9660* |
Restricted existential quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
         
    |
| |
| Theorem | 2rexuz 9661* |
Double existential quantification in an upper set of integers.
(Contributed by NM, 3-Nov-2005.)
|
   
           |
| |
| Theorem | peano2uz 9662 |
Second Peano postulate for an upper set of integers. (Contributed by NM,
7-Sep-2005.)
|
     
       |
| |
| Theorem | peano2uzs 9663 |
Second Peano postulate for an upper set of integers. (Contributed by
Mario Carneiro, 26-Dec-2013.)
|
         |
| |
| Theorem | peano2uzr 9664 |
Reversed second Peano axiom for upper integers. (Contributed by NM,
2-Jan-2006.)
|
               |
| |
| Theorem | uzaddcl 9665 |
Addition closure law for an upper set of integers. (Contributed by NM,
4-Jun-2006.)
|
        
      |
| |
| Theorem | nn0pzuz 9666 |
The sum of a nonnegative integer and an integer is an integer greater than
or equal to that integer. (Contributed by Alexander van der Vekens,
3-Oct-2018.)
|
    
      |
| |
| Theorem | uzind4 9667* |
Induction on the upper set of integers that starts at an integer .
The first four hypotheses give us the substitution instances we need,
and the last two are the basis and the induction step. (Contributed by
NM, 7-Sep-2005.)
|
                  
                |
| |
| Theorem | uzind4ALT 9668* |
Induction on the upper set of integers that starts at an integer .
The last four hypotheses give us the substitution instances we need; the
first two are the basis and the induction step. Either uzind4 9667 or
uzind4ALT 9668 may be used; see comment for nnind 9011. (Contributed by NM,
7-Sep-2005.) (New usage is discouraged.)
(Proof modification is discouraged.)
|
                                   |
| |
| Theorem | uzind4s 9669* |
Induction on the upper set of integers that starts at an integer ,
using explicit substitution. The hypotheses are the basis and the
induction step. (Contributed by NM, 4-Nov-2005.)
|
   ![]. ].](_drbrack.gif)            ![]. ].](_drbrack.gif)          ![]. ].](_drbrack.gif)   |
| |
| Theorem | uzind4s2 9670* |
Induction on the upper set of integers that starts at an integer ,
using explicit substitution. The hypotheses are the basis and the
induction step. Use this instead of uzind4s 9669 when and
must
be distinct in     ![]. ].](_drbrack.gif) . (Contributed by NM,
16-Nov-2005.)
|
   ![]. ].](_drbrack.gif)          ![]. ].](_drbrack.gif)
    ![]. ].](_drbrack.gif)          ![]. ].](_drbrack.gif)   |
| |
| Theorem | uzind4i 9671* |
Induction on the upper integers that start at . The first four
give us the substitution instances we need, and the last two are the
basis and the induction step. This is a stronger version of uzind4 9667
assuming that holds unconditionally. Notice that
    implies that the lower bound
is an integer
( , see eluzel2 9611). (Contributed by NM, 4-Sep-2005.)
(Revised by AV, 13-Jul-2022.)
|
                      
          |
| |
| Theorem | indstr 9672* |
Strong Mathematical Induction for positive integers (inference schema).
(Contributed by NM, 17-Aug-2001.)
|
    
  

     |
| |
| Theorem | infrenegsupex 9673* |
The infimum of a set of reals is the negative of the supremum of
the negatives of its elements. (Contributed by Jim Kingdon,
14-Jan-2022.)
|
   
 
       inf             |
| |
| Theorem | supinfneg 9674* |
If a set of real numbers has a least upper bound, the set of the
negation of those numbers has a greatest lower bound. For a theorem
which is similar but only for the boundedness part, see ublbneg 9692.
(Contributed by Jim Kingdon, 15-Jan-2022.)
|
   
 
              

        |
| |
| Theorem | infsupneg 9675* |
If a set of real numbers has a greatest lower bound, the set of the
negation of those numbers has a least upper bound. To go in the other
direction see supinfneg 9674. (Contributed by Jim Kingdon,
15-Jan-2022.)
|
   
 
              

        |
| |
| Theorem | supminfex 9676* |
A supremum is the negation of the infimum of that set's image under
negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
|
   
 
         
 inf        |
| |
| Theorem | infregelbex 9677* |
Any lower bound of a set of real numbers with an infimum is less than or
equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.)
|
   
 
          inf       |
| |
| Theorem | eluznn0 9678 |
Membership in a nonnegative upper set of integers implies membership in
.
(Contributed by Paul Chapman, 22-Jun-2011.)
|
      
  |
| |
| Theorem | eluznn 9679 |
Membership in a positive upper set of integers implies membership in
. (Contributed
by JJ, 1-Oct-2018.)
|
         |
| |
| Theorem | eluz2b1 9680 |
Two ways to say "an integer greater than or equal to 2".
(Contributed by
Paul Chapman, 23-Nov-2012.)
|
         |
| |
| Theorem | eluz2gt1 9681 |
An integer greater than or equal to 2 is greater than 1. (Contributed by
AV, 24-May-2020.)
|
    
  |
| |
| Theorem | eluz2b2 9682 |
Two ways to say "an integer greater than or equal to 2".
(Contributed by
Paul Chapman, 23-Nov-2012.)
|
         |
| |
| Theorem | eluz2b3 9683 |
Two ways to say "an integer greater than or equal to 2".
(Contributed by
Paul Chapman, 23-Nov-2012.)
|
         |
| |
| Theorem | uz2m1nn 9684 |
One less than an integer greater than or equal to 2 is a positive integer.
(Contributed by Paul Chapman, 17-Nov-2012.)
|
     
   |
| |
| Theorem | 1nuz2 9685 |
1 is not in     . (Contributed by Paul Chapman,
21-Nov-2012.)
|
     |
| |
| Theorem | elnn1uz2 9686 |
A positive integer is either 1 or greater than or equal to 2.
(Contributed by Paul Chapman, 17-Nov-2012.)
|
 
       |
| |
| Theorem | uz2mulcl 9687 |
Closure of multiplication of integers greater than or equal to 2.
(Contributed by Paul Chapman, 26-Oct-2012.)
|
           

      |
| |
| Theorem | indstr2 9688* |
Strong Mathematical Induction for positive integers (inference schema).
The first two hypotheses give us the substitution instances we need; the
last two are the basis and the induction step. (Contributed by Paul
Chapman, 21-Nov-2012.)
|
    
   
   
 


  
  |
| |
| Theorem | eluzdc 9689 |
Membership of an integer in an upper set of integers is decidable.
(Contributed by Jim Kingdon, 18-Apr-2020.)
|
   DECID
      |
| |
| Theorem | elnn0dc 9690 |
Membership of an integer in is decidable. (Contributed by Jim
Kingdon, 8-Oct-2024.)
|
 DECID   |
| |
| Theorem | elnndc 9691 |
Membership of an integer in is decidable. (Contributed by Jim
Kingdon, 17-Oct-2024.)
|
 DECID   |
| |
| Theorem | ublbneg 9692* |
The image under negation of a bounded-above set of reals is bounded
below. For a theorem which is similar but also adds that the bounds
need to be the tightest possible, see supinfneg 9674. (Contributed by
Paul Chapman, 21-Mar-2011.)
|
        
  |
| |
| Theorem | eqreznegel 9693* |
Two ways to express the image under negation of a set of integers.
(Contributed by Paul Chapman, 21-Mar-2011.)
|
   
     |
| |
| Theorem | negm 9694* |
The image under negation of an inhabited set of reals is inhabited.
(Contributed by Jim Kingdon, 10-Apr-2020.)
|
    
     |
| |
| Theorem | lbzbi 9695* |
If a set of reals is bounded below, it is bounded below by an integer.
(Contributed by Paul Chapman, 21-Mar-2011.)
|
         |
| |
| Theorem | nn01to3 9696 |
A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed
by Alexander van der Vekens, 13-Sep-2018.)
|
 
 
   |
| |
| Theorem | nn0ge2m1nnALT 9697 |
Alternate proof of nn0ge2m1nn 9314: If a nonnegative integer is greater
than or equal to two, the integer decreased by 1 is a positive integer.
This version is proved using eluz2 9612, a theorem for upper sets of
integers, which are defined later than the positive and nonnegative
integers. This proof is, however, much shorter than the proof of
nn0ge2m1nn 9314. (Contributed by Alexander van der Vekens,
1-Aug-2018.)
(New usage is discouraged.) (Proof modification is discouraged.)
|
 
     |
| |
| 4.4.12 Rational numbers (as a subset of complex
numbers)
|
| |
| Syntax | cq 9698 |
Extend class notation to include the class of rationals.
|
 |
| |
| Definition | df-q 9699 |
Define the set of rational numbers. Based on definition of rationals in
[Apostol] p. 22. See elq 9701
for the relation "is rational". (Contributed
by NM, 8-Jan-2002.)
|
     |
| |
| Theorem | divfnzn 9700 |
Division restricted to is a function. Given
excluded
middle, it would be easy to prove this for     .
The key difference is that an element of is apart from zero,
whereas being an element of
  implies being not equal to
zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
|
      |