| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpre | Unicode version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 9850 |
. . 3
| |
| 2 | ssrab2 3309 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3256 |
. 2
|
| 4 | 3 | sseli 3220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-in 3203 df-ss 3210 df-rp 9850 |
| This theorem is referenced by: rpxr 9857 rpcn 9858 rpssre 9860 rpge0 9862 rprege0 9864 rpap0 9866 rprene0 9867 rpreap0 9868 rpaddcl 9873 rpmulcl 9874 rpdivcl 9875 rpgecl 9878 ledivge1le 9922 addlelt 9964 iccdil 10194 expnlbnd 10886 caucvgre 11492 rennim 11513 rpsqrtcl 11552 qdenre 11713 rpmaxcl 11734 rpmincl 11749 xrminrpcl 11785 2clim 11812 cn1lem 11825 climsqz 11846 climsqz2 11847 climcau 11858 efgt1 12208 ef01bndlem 12267 sinltxirr 12272 bdmet 15176 bdmopn 15178 dveflem 15400 reeff1o 15447 logleb 15549 logrpap0b 15550 cxple3 15595 rpcxpsqrt 15596 rpcxpsqrtth 15604 dceqnconst 16428 dcapnconst 16429 |
| Copyright terms: Public domain | W3C validator |