| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpre | Unicode version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 9811 |
. . 3
| |
| 2 | ssrab2 3286 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3233 |
. 2
|
| 4 | 3 | sseli 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-in 3180 df-ss 3187 df-rp 9811 |
| This theorem is referenced by: rpxr 9818 rpcn 9819 rpssre 9821 rpge0 9823 rprege0 9825 rpap0 9827 rprene0 9828 rpreap0 9829 rpaddcl 9834 rpmulcl 9835 rpdivcl 9836 rpgecl 9839 ledivge1le 9883 addlelt 9925 iccdil 10155 expnlbnd 10846 caucvgre 11407 rennim 11428 rpsqrtcl 11467 qdenre 11628 rpmaxcl 11649 rpmincl 11664 xrminrpcl 11700 2clim 11727 cn1lem 11740 climsqz 11761 climsqz2 11762 climcau 11773 efgt1 12123 ef01bndlem 12182 sinltxirr 12187 bdmet 15089 bdmopn 15091 dveflem 15313 reeff1o 15360 logleb 15462 logrpap0b 15463 cxple3 15508 rpcxpsqrt 15509 rpcxpsqrtth 15517 dceqnconst 16201 dcapnconst 16202 |
| Copyright terms: Public domain | W3C validator |