| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpre | Unicode version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 9746 |
. . 3
| |
| 2 | ssrab2 3269 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3216 |
. 2
|
| 4 | 3 | sseli 3180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 df-rp 9746 |
| This theorem is referenced by: rpxr 9753 rpcn 9754 rpssre 9756 rpge0 9758 rprege0 9760 rpap0 9762 rprene0 9763 rpreap0 9764 rpaddcl 9769 rpmulcl 9770 rpdivcl 9771 rpgecl 9774 ledivge1le 9818 addlelt 9860 iccdil 10090 expnlbnd 10773 caucvgre 11163 rennim 11184 rpsqrtcl 11223 qdenre 11384 rpmaxcl 11405 rpmincl 11420 xrminrpcl 11456 2clim 11483 cn1lem 11496 climsqz 11517 climsqz2 11518 climcau 11529 efgt1 11879 ef01bndlem 11938 sinltxirr 11943 bdmet 14822 bdmopn 14824 dveflem 15046 reeff1o 15093 logleb 15195 logrpap0b 15196 cxple3 15241 rpcxpsqrt 15242 rpcxpsqrtth 15250 dceqnconst 15791 dcapnconst 15792 |
| Copyright terms: Public domain | W3C validator |