![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpre | Unicode version |
Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
rpre |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rp 9720 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ssrab2 3264 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqsstri 3211 |
. 2
![]() ![]() ![]() ![]() |
4 | 3 | sseli 3175 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-in 3159 df-ss 3166 df-rp 9720 |
This theorem is referenced by: rpxr 9727 rpcn 9728 rpssre 9730 rpge0 9732 rprege0 9734 rpap0 9736 rprene0 9737 rpreap0 9738 rpaddcl 9743 rpmulcl 9744 rpdivcl 9745 rpgecl 9748 ledivge1le 9792 addlelt 9834 iccdil 10064 expnlbnd 10735 caucvgre 11125 rennim 11146 rpsqrtcl 11185 qdenre 11346 rpmaxcl 11367 rpmincl 11381 xrminrpcl 11417 2clim 11444 cn1lem 11457 climsqz 11478 climsqz2 11479 climcau 11490 efgt1 11840 ef01bndlem 11899 sinltxirr 11904 bdmet 14670 bdmopn 14672 dveflem 14872 reeff1o 14908 logleb 15010 logrpap0b 15011 cxple3 15055 rpcxpsqrt 15056 rpcxpsqrtth 15064 dceqnconst 15550 dcapnconst 15551 |
Copyright terms: Public domain | W3C validator |