| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpre | Unicode version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 9776 |
. . 3
| |
| 2 | ssrab2 3278 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3225 |
. 2
|
| 4 | 3 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-in 3172 df-ss 3179 df-rp 9776 |
| This theorem is referenced by: rpxr 9783 rpcn 9784 rpssre 9786 rpge0 9788 rprege0 9790 rpap0 9792 rprene0 9793 rpreap0 9794 rpaddcl 9799 rpmulcl 9800 rpdivcl 9801 rpgecl 9804 ledivge1le 9848 addlelt 9890 iccdil 10120 expnlbnd 10809 caucvgre 11292 rennim 11313 rpsqrtcl 11352 qdenre 11513 rpmaxcl 11534 rpmincl 11549 xrminrpcl 11585 2clim 11612 cn1lem 11625 climsqz 11646 climsqz2 11647 climcau 11658 efgt1 12008 ef01bndlem 12067 sinltxirr 12072 bdmet 14974 bdmopn 14976 dveflem 15198 reeff1o 15245 logleb 15347 logrpap0b 15348 cxple3 15393 rpcxpsqrt 15394 rpcxpsqrtth 15402 dceqnconst 16003 dcapnconst 16004 |
| Copyright terms: Public domain | W3C validator |