Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpre | Unicode version |
Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
rpre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rp 9598 | . . 3 | |
2 | ssrab2 3232 | . . 3 | |
3 | 1, 2 | eqsstri 3179 | . 2 |
4 | 3 | sseli 3143 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 crab 2452 class class class wbr 3987 cr 7760 cc0 7761 clt 7941 crp 9597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-in 3127 df-ss 3134 df-rp 9598 |
This theorem is referenced by: rpxr 9605 rpcn 9606 rpssre 9608 rpge0 9610 rprege0 9612 rpap0 9614 rprene0 9615 rpreap0 9616 rpaddcl 9621 rpmulcl 9622 rpdivcl 9623 rpgecl 9626 ledivge1le 9670 addlelt 9712 iccdil 9942 expnlbnd 10587 caucvgre 10932 rennim 10953 rpsqrtcl 10992 qdenre 11153 rpmaxcl 11174 rpmincl 11188 xrminrpcl 11224 2clim 11251 cn1lem 11264 climsqz 11285 climsqz2 11286 climcau 11297 efgt1 11647 ef01bndlem 11706 bdmet 13255 bdmopn 13257 dveflem 13440 reeff1o 13447 logleb 13549 logrpap0b 13550 cxple3 13594 rpcxpsqrt 13595 rpcxpsqrtth 13603 dceqnconst 14051 dcapnconst 14052 |
Copyright terms: Public domain | W3C validator |