| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpre | Unicode version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 9778 |
. . 3
| |
| 2 | ssrab2 3278 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3225 |
. 2
|
| 4 | 3 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-in 3172 df-ss 3179 df-rp 9778 |
| This theorem is referenced by: rpxr 9785 rpcn 9786 rpssre 9788 rpge0 9790 rprege0 9792 rpap0 9794 rprene0 9795 rpreap0 9796 rpaddcl 9801 rpmulcl 9802 rpdivcl 9803 rpgecl 9806 ledivge1le 9850 addlelt 9892 iccdil 10122 expnlbnd 10811 caucvgre 11325 rennim 11346 rpsqrtcl 11385 qdenre 11546 rpmaxcl 11567 rpmincl 11582 xrminrpcl 11618 2clim 11645 cn1lem 11658 climsqz 11679 climsqz2 11680 climcau 11691 efgt1 12041 ef01bndlem 12100 sinltxirr 12105 bdmet 15007 bdmopn 15009 dveflem 15231 reeff1o 15278 logleb 15380 logrpap0b 15381 cxple3 15426 rpcxpsqrt 15427 rpcxpsqrtth 15435 dceqnconst 16036 dcapnconst 16037 |
| Copyright terms: Public domain | W3C validator |