| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpre | Unicode version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 9734 |
. . 3
| |
| 2 | ssrab2 3269 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3216 |
. 2
|
| 4 | 3 | sseli 3180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 df-rp 9734 |
| This theorem is referenced by: rpxr 9741 rpcn 9742 rpssre 9744 rpge0 9746 rprege0 9748 rpap0 9750 rprene0 9751 rpreap0 9752 rpaddcl 9757 rpmulcl 9758 rpdivcl 9759 rpgecl 9762 ledivge1le 9806 addlelt 9848 iccdil 10078 expnlbnd 10761 caucvgre 11151 rennim 11172 rpsqrtcl 11211 qdenre 11372 rpmaxcl 11393 rpmincl 11408 xrminrpcl 11444 2clim 11471 cn1lem 11484 climsqz 11505 climsqz2 11506 climcau 11517 efgt1 11867 ef01bndlem 11926 sinltxirr 11931 bdmet 14785 bdmopn 14787 dveflem 15009 reeff1o 15056 logleb 15158 logrpap0b 15159 cxple3 15204 rpcxpsqrt 15205 rpcxpsqrtth 15213 dceqnconst 15754 dcapnconst 15755 |
| Copyright terms: Public domain | W3C validator |