Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpssre | GIF version |
Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
Ref | Expression |
---|---|
rpssre | ⊢ ℝ+ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9596 | . 2 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
2 | 1 | ssriv 3146 | 1 ⊢ ℝ+ ⊆ ℝ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3116 ℝcr 7752 ℝ+crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-in 3122 df-ss 3129 df-rp 9590 |
This theorem is referenced by: rpred 9632 rpexpcl 10474 resqrexlemcvg 10961 resqrexlemsqa 10966 fsumrpcl 11345 fprodrpcl 11552 |
Copyright terms: Public domain | W3C validator |