![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpssre | GIF version |
Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
Ref | Expression |
---|---|
rpssre | ⊢ ℝ+ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9729 | . 2 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
2 | 1 | ssriv 3184 | 1 ⊢ ℝ+ ⊆ ℝ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3154 ℝcr 7873 ℝ+crp 9722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-in 3160 df-ss 3167 df-rp 9723 |
This theorem is referenced by: rpred 9765 rpexpcl 10632 resqrexlemcvg 11166 resqrexlemsqa 11171 fsumrpcl 11550 fprodrpcl 11757 metuex 14054 |
Copyright terms: Public domain | W3C validator |