ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpssre GIF version

Theorem rpssre 9821
Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
Assertion
Ref Expression
rpssre + ⊆ ℝ

Proof of Theorem rpssre
StepHypRef Expression
1 rpre 9817 . 2 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
21ssriv 3205 1 + ⊆ ℝ
Colors of variables: wff set class
Syntax hints:  wss 3174  cr 7959  +crp 9810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-in 3180  df-ss 3187  df-rp 9811
This theorem is referenced by:  rpred  9853  rpexpcl  10740  resqrexlemcvg  11445  resqrexlemsqa  11450  fsumrpcl  11830  fprodrpcl  12037  metuex  14432
  Copyright terms: Public domain W3C validator