ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpssre GIF version

Theorem rpssre 9739
Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
Assertion
Ref Expression
rpssre + ⊆ ℝ

Proof of Theorem rpssre
StepHypRef Expression
1 rpre 9735 . 2 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
21ssriv 3187 1 + ⊆ ℝ
Colors of variables: wff set class
Syntax hints:  wss 3157  cr 7878  +crp 9728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-in 3163  df-ss 3170  df-rp 9729
This theorem is referenced by:  rpred  9771  rpexpcl  10650  resqrexlemcvg  11184  resqrexlemsqa  11189  fsumrpcl  11569  fprodrpcl  11776  metuex  14111
  Copyright terms: Public domain W3C validator