ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemsqa Unicode version

Theorem resqrexlemsqa 10988
Description: Lemma for resqrex 10990. The square of a limit is  A. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
Assertion
Ref Expression
resqrexlemsqa  |-  ( ph  ->  ( L ^ 2 )  =  A )
Distinct variable groups:    A, e, j   
y, A, z    e, F, j    y, F, z   
i, F    e, L, j, i    y, L, z   
e, i, j    ph, y,
z
Allowed substitution hints:    ph( e, i, j)    A( i)

Proof of Theorem resqrexlemsqa
Dummy variables  a  b  c  d  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 10971 . . . . . 6  |-  ( ph  ->  F : NN --> RR+ )
54ffvelrnda 5631 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  RR+ )
6 2z 9240 . . . . . 6  |-  2  e.  ZZ
76a1i 9 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  2  e.  ZZ )
85, 7rpexpcld 10633 . . . 4  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( F `  x ) ^ 2 )  e.  RR+ )
9 eqid 2170 . . . 4  |-  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )  =  ( x  e.  NN  |->  ( ( F `
 x ) ^
2 ) )
108, 9fmptd 5650 . . 3  |-  ( ph  ->  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) : NN --> RR+ )
11 rpssre 9621 . . . 4  |-  RR+  C_  RR
1211a1i 9 . . 3  |-  ( ph  -> 
RR+  C_  RR )
1310, 12fssd 5360 . 2  |-  ( ph  ->  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) : NN --> RR )
14 resqrexlemgt0.rr . . 3  |-  ( ph  ->  L  e.  RR )
1514resqcld 10635 . 2  |-  ( ph  ->  ( L ^ 2 )  e.  RR )
16 resqrexlemgt0.lim . . . 4  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
17 oveq2 5861 . . . . . . . . 9  |-  ( e  =  a  ->  ( L  +  e )  =  ( L  +  a ) )
1817breq2d 4001 . . . . . . . 8  |-  ( e  =  a  ->  (
( F `  i
)  <  ( L  +  e )  <->  ( F `  i )  <  ( L  +  a )
) )
19 oveq2 5861 . . . . . . . . 9  |-  ( e  =  a  ->  (
( F `  i
)  +  e )  =  ( ( F `
 i )  +  a ) )
2019breq2d 4001 . . . . . . . 8  |-  ( e  =  a  ->  ( L  <  ( ( F `
 i )  +  e )  <->  L  <  ( ( F `  i
)  +  a ) ) )
2118, 20anbi12d 470 . . . . . . 7  |-  ( e  =  a  ->  (
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <-> 
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2221rexralbidv 2496 . . . . . 6  |-  ( e  =  a  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2322cbvralv 2696 . . . . 5  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. a  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
24 fveq2 5496 . . . . . . . 8  |-  ( j  =  b  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  b )
)
2524raleqdv 2671 . . . . . . 7  |-  ( j  =  b  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( L  +  a )  /\  L  <  ( ( F `
 i )  +  a ) )  <->  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2625cbvrexv 2697 . . . . . 6  |-  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
2726ralbii 2476 . . . . 5  |-  ( A. a  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
28 fveq2 5496 . . . . . . . . . 10  |-  ( i  =  c  ->  ( F `  i )  =  ( F `  c ) )
2928breq1d 3999 . . . . . . . . 9  |-  ( i  =  c  ->  (
( F `  i
)  <  ( L  +  a )  <->  ( F `  c )  <  ( L  +  a )
) )
3028oveq1d 5868 . . . . . . . . . 10  |-  ( i  =  c  ->  (
( F `  i
)  +  a )  =  ( ( F `
 c )  +  a ) )
3130breq2d 4001 . . . . . . . . 9  |-  ( i  =  c  ->  ( L  <  ( ( F `
 i )  +  a )  <->  L  <  ( ( F `  c
)  +  a ) ) )
3229, 31anbi12d 470 . . . . . . . 8  |-  ( i  =  c  ->  (
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <-> 
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) ) )
3332cbvralv 2696 . . . . . . 7  |-  ( A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3433rexbii 2477 . . . . . 6  |-  ( E. b  e.  NN  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3534ralbii 2476 . . . . 5  |-  ( A. a  e.  RR+  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3623, 27, 353bitri 205 . . . 4  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3716, 36sylib 121 . . 3  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
381, 2, 3, 14, 37, 9resqrexlemglsq 10986 . 2  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. d  e.  ( ZZ>= `  b ) ( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `  d
)  <  ( ( L ^ 2 )  +  a )  /\  ( L ^ 2 )  < 
( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `
 d )  +  a ) ) )
391, 2, 3, 14, 37, 9resqrexlemga 10987 . 2  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. d  e.  ( ZZ>= `  b ) ( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `  d
)  <  ( A  +  a )  /\  A  <  ( ( ( x  e.  NN  |->  ( ( F `  x
) ^ 2 ) ) `  d )  +  a ) ) )
4013, 15, 38, 2, 39recvguniq 10959 1  |-  ( ph  ->  ( L ^ 2 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    C_ wss 3121   {csn 3583   class class class wbr 3989    |-> cmpt 4050    X. cxp 4609   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955    / cdiv 8589   NNcn 8878   2c2 8929   ZZcz 9212   ZZ>=cuz 9487   RR+crp 9610    seqcseq 10401   ^cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  resqrexlemex  10989
  Copyright terms: Public domain W3C validator