ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemsqa Unicode version

Theorem resqrexlemsqa 10966
Description: Lemma for resqrex 10968. The square of a limit is  A. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
Assertion
Ref Expression
resqrexlemsqa  |-  ( ph  ->  ( L ^ 2 )  =  A )
Distinct variable groups:    A, e, j   
y, A, z    e, F, j    y, F, z   
i, F    e, L, j, i    y, L, z   
e, i, j    ph, y,
z
Allowed substitution hints:    ph( e, i, j)    A( i)

Proof of Theorem resqrexlemsqa
Dummy variables  a  b  c  d  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 10949 . . . . . 6  |-  ( ph  ->  F : NN --> RR+ )
54ffvelrnda 5620 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  RR+ )
6 2z 9219 . . . . . 6  |-  2  e.  ZZ
76a1i 9 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  2  e.  ZZ )
85, 7rpexpcld 10612 . . . 4  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( F `  x ) ^ 2 )  e.  RR+ )
9 eqid 2165 . . . 4  |-  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )  =  ( x  e.  NN  |->  ( ( F `
 x ) ^
2 ) )
108, 9fmptd 5639 . . 3  |-  ( ph  ->  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) : NN --> RR+ )
11 rpssre 9600 . . . 4  |-  RR+  C_  RR
1211a1i 9 . . 3  |-  ( ph  -> 
RR+  C_  RR )
1310, 12fssd 5350 . 2  |-  ( ph  ->  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) : NN --> RR )
14 resqrexlemgt0.rr . . 3  |-  ( ph  ->  L  e.  RR )
1514resqcld 10614 . 2  |-  ( ph  ->  ( L ^ 2 )  e.  RR )
16 resqrexlemgt0.lim . . . 4  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
17 oveq2 5850 . . . . . . . . 9  |-  ( e  =  a  ->  ( L  +  e )  =  ( L  +  a ) )
1817breq2d 3994 . . . . . . . 8  |-  ( e  =  a  ->  (
( F `  i
)  <  ( L  +  e )  <->  ( F `  i )  <  ( L  +  a )
) )
19 oveq2 5850 . . . . . . . . 9  |-  ( e  =  a  ->  (
( F `  i
)  +  e )  =  ( ( F `
 i )  +  a ) )
2019breq2d 3994 . . . . . . . 8  |-  ( e  =  a  ->  ( L  <  ( ( F `
 i )  +  e )  <->  L  <  ( ( F `  i
)  +  a ) ) )
2118, 20anbi12d 465 . . . . . . 7  |-  ( e  =  a  ->  (
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <-> 
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2221rexralbidv 2492 . . . . . 6  |-  ( e  =  a  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2322cbvralv 2692 . . . . 5  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. a  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
24 fveq2 5486 . . . . . . . 8  |-  ( j  =  b  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  b )
)
2524raleqdv 2667 . . . . . . 7  |-  ( j  =  b  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( L  +  a )  /\  L  <  ( ( F `
 i )  +  a ) )  <->  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2625cbvrexv 2693 . . . . . 6  |-  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
2726ralbii 2472 . . . . 5  |-  ( A. a  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
28 fveq2 5486 . . . . . . . . . 10  |-  ( i  =  c  ->  ( F `  i )  =  ( F `  c ) )
2928breq1d 3992 . . . . . . . . 9  |-  ( i  =  c  ->  (
( F `  i
)  <  ( L  +  a )  <->  ( F `  c )  <  ( L  +  a )
) )
3028oveq1d 5857 . . . . . . . . . 10  |-  ( i  =  c  ->  (
( F `  i
)  +  a )  =  ( ( F `
 c )  +  a ) )
3130breq2d 3994 . . . . . . . . 9  |-  ( i  =  c  ->  ( L  <  ( ( F `
 i )  +  a )  <->  L  <  ( ( F `  c
)  +  a ) ) )
3229, 31anbi12d 465 . . . . . . . 8  |-  ( i  =  c  ->  (
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <-> 
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) ) )
3332cbvralv 2692 . . . . . . 7  |-  ( A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3433rexbii 2473 . . . . . 6  |-  ( E. b  e.  NN  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3534ralbii 2472 . . . . 5  |-  ( A. a  e.  RR+  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3623, 27, 353bitri 205 . . . 4  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3716, 36sylib 121 . . 3  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
381, 2, 3, 14, 37, 9resqrexlemglsq 10964 . 2  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. d  e.  ( ZZ>= `  b ) ( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `  d
)  <  ( ( L ^ 2 )  +  a )  /\  ( L ^ 2 )  < 
( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `
 d )  +  a ) ) )
391, 2, 3, 14, 37, 9resqrexlemga 10965 . 2  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. d  e.  ( ZZ>= `  b ) ( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `  d
)  <  ( A  +  a )  /\  A  <  ( ( ( x  e.  NN  |->  ( ( F `  x
) ^ 2 ) ) `  d )  +  a ) ) )
4013, 15, 38, 2, 39recvguniq 10937 1  |-  ( ph  ->  ( L ^ 2 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   {csn 3576   class class class wbr 3982    |-> cmpt 4043    X. cxp 4602   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    < clt 7933    <_ cle 7934    / cdiv 8568   NNcn 8857   2c2 8908   ZZcz 9191   ZZ>=cuz 9466   RR+crp 9589    seqcseq 10380   ^cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  resqrexlemex  10967
  Copyright terms: Public domain W3C validator