ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemsqa Unicode version

Theorem resqrexlemsqa 11033
Description: Lemma for resqrex 11035. The square of a limit is  A. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
Assertion
Ref Expression
resqrexlemsqa  |-  ( ph  ->  ( L ^ 2 )  =  A )
Distinct variable groups:    A, e, j   
y, A, z    e, F, j    y, F, z   
i, F    e, L, j, i    y, L, z   
e, i, j    ph, y,
z
Allowed substitution hints:    ph( e, i, j)    A( i)

Proof of Theorem resqrexlemsqa
Dummy variables  a  b  c  d  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 11016 . . . . . 6  |-  ( ph  ->  F : NN --> RR+ )
54ffvelcdmda 5652 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  RR+ )
6 2z 9281 . . . . . 6  |-  2  e.  ZZ
76a1i 9 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  2  e.  ZZ )
85, 7rpexpcld 10678 . . . 4  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( F `  x ) ^ 2 )  e.  RR+ )
9 eqid 2177 . . . 4  |-  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )  =  ( x  e.  NN  |->  ( ( F `
 x ) ^
2 ) )
108, 9fmptd 5671 . . 3  |-  ( ph  ->  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) : NN --> RR+ )
11 rpssre 9664 . . . 4  |-  RR+  C_  RR
1211a1i 9 . . 3  |-  ( ph  -> 
RR+  C_  RR )
1310, 12fssd 5379 . 2  |-  ( ph  ->  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) : NN --> RR )
14 resqrexlemgt0.rr . . 3  |-  ( ph  ->  L  e.  RR )
1514resqcld 10680 . 2  |-  ( ph  ->  ( L ^ 2 )  e.  RR )
16 resqrexlemgt0.lim . . . 4  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
17 oveq2 5883 . . . . . . . . 9  |-  ( e  =  a  ->  ( L  +  e )  =  ( L  +  a ) )
1817breq2d 4016 . . . . . . . 8  |-  ( e  =  a  ->  (
( F `  i
)  <  ( L  +  e )  <->  ( F `  i )  <  ( L  +  a )
) )
19 oveq2 5883 . . . . . . . . 9  |-  ( e  =  a  ->  (
( F `  i
)  +  e )  =  ( ( F `
 i )  +  a ) )
2019breq2d 4016 . . . . . . . 8  |-  ( e  =  a  ->  ( L  <  ( ( F `
 i )  +  e )  <->  L  <  ( ( F `  i
)  +  a ) ) )
2118, 20anbi12d 473 . . . . . . 7  |-  ( e  =  a  ->  (
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <-> 
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2221rexralbidv 2503 . . . . . 6  |-  ( e  =  a  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2322cbvralv 2704 . . . . 5  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. a  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
24 fveq2 5516 . . . . . . . 8  |-  ( j  =  b  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  b )
)
2524raleqdv 2679 . . . . . . 7  |-  ( j  =  b  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( L  +  a )  /\  L  <  ( ( F `
 i )  +  a ) )  <->  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2625cbvrexv 2705 . . . . . 6  |-  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
2726ralbii 2483 . . . . 5  |-  ( A. a  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
28 fveq2 5516 . . . . . . . . . 10  |-  ( i  =  c  ->  ( F `  i )  =  ( F `  c ) )
2928breq1d 4014 . . . . . . . . 9  |-  ( i  =  c  ->  (
( F `  i
)  <  ( L  +  a )  <->  ( F `  c )  <  ( L  +  a )
) )
3028oveq1d 5890 . . . . . . . . . 10  |-  ( i  =  c  ->  (
( F `  i
)  +  a )  =  ( ( F `
 c )  +  a ) )
3130breq2d 4016 . . . . . . . . 9  |-  ( i  =  c  ->  ( L  <  ( ( F `
 i )  +  a )  <->  L  <  ( ( F `  c
)  +  a ) ) )
3229, 31anbi12d 473 . . . . . . . 8  |-  ( i  =  c  ->  (
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <-> 
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) ) )
3332cbvralv 2704 . . . . . . 7  |-  ( A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3433rexbii 2484 . . . . . 6  |-  ( E. b  e.  NN  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3534ralbii 2483 . . . . 5  |-  ( A. a  e.  RR+  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3623, 27, 353bitri 206 . . . 4  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3716, 36sylib 122 . . 3  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
381, 2, 3, 14, 37, 9resqrexlemglsq 11031 . 2  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. d  e.  ( ZZ>= `  b ) ( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `  d
)  <  ( ( L ^ 2 )  +  a )  /\  ( L ^ 2 )  < 
( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `
 d )  +  a ) ) )
391, 2, 3, 14, 37, 9resqrexlemga 11032 . 2  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. d  e.  ( ZZ>= `  b ) ( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `  d
)  <  ( A  +  a )  /\  A  <  ( ( ( x  e.  NN  |->  ( ( F `  x
) ^ 2 ) ) `  d )  +  a ) ) )
4013, 15, 38, 2, 39recvguniq 11004 1  |-  ( ph  ->  ( L ^ 2 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3130   {csn 3593   class class class wbr 4004    |-> cmpt 4065    X. cxp 4625   ` cfv 5217  (class class class)co 5875    e. cmpo 5877   RRcr 7810   0cc0 7811   1c1 7812    + caddc 7814    < clt 7992    <_ cle 7993    / cdiv 8629   NNcn 8919   2c2 8970   ZZcz 9253   ZZ>=cuz 9528   RR+crp 9653    seqcseq 10445   ^cexp 10519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-rp 9654  df-seqfrec 10446  df-exp 10520
This theorem is referenced by:  resqrexlemex  11034
  Copyright terms: Public domain W3C validator