ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcvg Unicode version

Theorem resqrexlemcvg 11330
Description: Lemma for resqrex 11337. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcvg  |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
r  +  x )  /\  r  <  (
( F `  i
)  +  x ) ) )
Distinct variable groups:    y, A, z   
i, F, j, r, x    ph, i, j, r    ph, y, z    ph, x
Allowed substitution hints:    A( x, i, j, r)    F( y, z)

Proof of Theorem resqrexlemcvg
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . 4  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . 4  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . 4  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 11318 . . 3  |-  ( ph  ->  F : NN --> RR+ )
5 rpssre 9786 . . . 4  |-  RR+  C_  RR
65a1i 9 . . 3  |-  ( ph  -> 
RR+  C_  RR )
74, 6fssd 5438 . 2  |-  ( ph  ->  F : NN --> RR )
8 1nn 9047 . . . . . . 7  |-  1  e.  NN
98a1i 9 . . . . . 6  |-  ( ph  ->  1  e.  NN )
104, 9ffvelcdmd 5716 . . . . 5  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
11 2z 9400 . . . . . 6  |-  2  e.  ZZ
1211a1i 9 . . . . 5  |-  ( ph  ->  2  e.  ZZ )
1310, 12rpexpcld 10842 . . . 4  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
14 2rp 9780 . . . . 5  |-  2  e.  RR+
1514a1i 9 . . . 4  |-  ( ph  ->  2  e.  RR+ )
1613, 15rpmulcld 9835 . . 3  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  x.  2 )  e.  RR+ )
1716, 15rpmulcld 9835 . 2  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  e.  RR+ )
184ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> RR+ )
19 simplr 528 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2018, 19ffvelcdmd 5716 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR+ )
2120rpred 9818 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR )
22 eluznn 9721 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
2322adantll 476 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
2418, 23ffvelcdmd 5716 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR+ )
2524rpred 9818 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR )
2621, 25resubcld 8453 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  e.  RR )
2717ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  e.  RR+ )
2814a1i 9 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  RR+ )
2919nnzd 9494 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  ZZ )
3028, 29rpexpcld 10842 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ n )  e.  RR+ )
3127, 30rpdivcld 9836 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  e.  RR+ )
3231rpred 9818 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  e.  RR )
3319nnrpd 9816 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
3427, 33rpdivcld 9836 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n )  e.  RR+ )
3534rpred 9818 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n )  e.  RR )
362ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  A  e.  RR )
373ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  0  <_  A )
38 eluzle 9660 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  n
)  ->  n  <_  k )
3938adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <_  k )
401, 36, 37, 19, 23, 39resqrexlemnm 11329 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
41 2cn 9107 . . . . . . . . . . 11  |-  2  e.  CC
42 expm1t 10712 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  n  e.  NN )  ->  ( 2 ^ n
)  =  ( ( 2 ^ ( n  -  1 ) )  x.  2 ) )
4341, 19, 42sylancr 414 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ n )  =  ( ( 2 ^ ( n  -  1 ) )  x.  2 ) )
4443oveq2d 5960 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  =  ( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  (
( 2 ^ (
n  -  1 ) )  x.  2 ) ) )
458a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  NN )
4618, 45ffvelcdmd 5716 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  1 )  e.  RR+ )
4711a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  ZZ )
4846, 47rpexpcld 10842 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
4948, 28rpmulcld 9835 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  1
) ^ 2 )  x.  2 )  e.  RR+ )
5049rpcnd 9820 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  1
) ^ 2 )  x.  2 )  e.  CC )
5141a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  CC )
52 nnm1nn0 9336 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
5319, 52syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  -  1 )  e. 
NN0 )
5451, 53expcld 10818 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ ( n  - 
1 ) )  e.  CC )
55 2ap0 9129 . . . . . . . . . . . 12  |-  2 #  0
5655a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2 #  0
)
57 1zzd 9399 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  ZZ )
5829, 57zsubcld 9500 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  -  1 )  e.  ZZ )
5951, 56, 58expap0d 10824 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ ( n  - 
1 ) ) #  0 )
6050, 54, 51, 59, 56divcanap5rd 8891 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( ( 2 ^ ( n  - 
1 ) )  x.  2 ) )  =  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
6144, 60eqtrd 2238 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  =  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
6240, 61breqtrrd 4072 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  (
2 ^ n ) ) )
63 uzid 9662 . . . . . . . . . 10  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
6411, 63ax-mp 5 . . . . . . . . 9  |-  2  e.  ( ZZ>= `  2 )
6519nnnn0d 9348 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN0 )
66 bernneq3 10807 . . . . . . . . 9  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  n  <  ( 2 ^ n
) )
6764, 65, 66sylancr 414 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <  ( 2 ^ n ) )
6833, 30, 27ltdiv2d 9842 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <  ( 2 ^ n
)  <->  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  / 
( 2 ^ n
) )  <  (
( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) )
6967, 68mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )
7026, 32, 35, 62, 69lttrd 8198 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )
7121, 25, 35ltsubadd2d 8616 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( F `
 k ) )  <  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  /  n )  <->  ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) ) )
7270, 71mpbid 147 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
7321, 35readdcld 8102 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  +  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) )  e.  RR )
7425adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  e.  RR )
7521adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  n )  e.  RR )
7636adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  A  e.  RR )
7737adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  0  <_  A )
7819adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  n  e.  NN )
7923adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  k  e.  NN )
80 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  n  <  k )
811, 76, 77, 78, 79, 80resqrexlemdecn 11323 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  <  ( F `  n )
)
8274, 75, 81ltled 8191 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  <_  ( F `  n )
)
83 fveq2 5576 . . . . . . . . 9  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
8483eqcomd 2211 . . . . . . . 8  |-  ( n  =  k  ->  ( F `  k )  =  ( F `  n ) )
85 eqle 8164 . . . . . . . 8  |-  ( ( ( F `  k
)  e.  RR  /\  ( F `  k )  =  ( F `  n ) )  -> 
( F `  k
)  <_  ( F `  n ) )
8625, 84, 85syl2an 289 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  =  k )  ->  ( F `  k )  <_  ( F `  n )
)
8723nnzd 9494 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  ZZ )
88 zleloe 9419 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( n  <_  k  <->  ( n  <  k  \/  n  =  k ) ) )
8929, 87, 88syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <_  k  <->  ( n  < 
k  \/  n  =  k ) ) )
9039, 89mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <  k  \/  n  =  k ) )
9182, 86, 90mpjaodan 800 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  <_  ( F `  n )
)
9221, 34ltaddrpd 9852 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
9325, 21, 73, 91, 92lelttrd 8197 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
9472, 93jca 306 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) ) )
9594ralrimiva 2579 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) ) )
9695ralrimiva 2579 . 2  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) ) )
977, 17, 96cvg1n 11297 1  |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
r  +  x )  /\  r  <  (
( F `  i
)  +  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   {csn 3633   class class class wbr 4044    X. cxp 4673   -->wf 5267   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108    - cmin 8243   # cap 8654    / cdiv 8745   NNcn 9036   2c2 9087   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648   RR+crp 9775    seqcseq 10592   ^cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684
This theorem is referenced by:  resqrexlemex  11336
  Copyright terms: Public domain W3C validator