| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemcvg | Unicode version | ||
| Description: Lemma for resqrex 11337. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq |
|
| resqrexlemex.a |
|
| resqrexlemex.agt0 |
|
| Ref | Expression |
|---|---|
| resqrexlemcvg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrexlemex.seq |
. . . 4
| |
| 2 | resqrexlemex.a |
. . . 4
| |
| 3 | resqrexlemex.agt0 |
. . . 4
| |
| 4 | 1, 2, 3 | resqrexlemf 11318 |
. . 3
|
| 5 | rpssre 9786 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 4, 6 | fssd 5438 |
. 2
|
| 8 | 1nn 9047 |
. . . . . . 7
| |
| 9 | 8 | a1i 9 |
. . . . . 6
|
| 10 | 4, 9 | ffvelcdmd 5716 |
. . . . 5
|
| 11 | 2z 9400 |
. . . . . 6
| |
| 12 | 11 | a1i 9 |
. . . . 5
|
| 13 | 10, 12 | rpexpcld 10842 |
. . . 4
|
| 14 | 2rp 9780 |
. . . . 5
| |
| 15 | 14 | a1i 9 |
. . . 4
|
| 16 | 13, 15 | rpmulcld 9835 |
. . 3
|
| 17 | 16, 15 | rpmulcld 9835 |
. 2
|
| 18 | 4 | ad2antrr 488 |
. . . . . . . . . 10
|
| 19 | simplr 528 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | ffvelcdmd 5716 |
. . . . . . . . 9
|
| 21 | 20 | rpred 9818 |
. . . . . . . 8
|
| 22 | eluznn 9721 |
. . . . . . . . . . 11
| |
| 23 | 22 | adantll 476 |
. . . . . . . . . 10
|
| 24 | 18, 23 | ffvelcdmd 5716 |
. . . . . . . . 9
|
| 25 | 24 | rpred 9818 |
. . . . . . . 8
|
| 26 | 21, 25 | resubcld 8453 |
. . . . . . 7
|
| 27 | 17 | ad2antrr 488 |
. . . . . . . . 9
|
| 28 | 14 | a1i 9 |
. . . . . . . . . 10
|
| 29 | 19 | nnzd 9494 |
. . . . . . . . . 10
|
| 30 | 28, 29 | rpexpcld 10842 |
. . . . . . . . 9
|
| 31 | 27, 30 | rpdivcld 9836 |
. . . . . . . 8
|
| 32 | 31 | rpred 9818 |
. . . . . . 7
|
| 33 | 19 | nnrpd 9816 |
. . . . . . . . 9
|
| 34 | 27, 33 | rpdivcld 9836 |
. . . . . . . 8
|
| 35 | 34 | rpred 9818 |
. . . . . . 7
|
| 36 | 2 | ad2antrr 488 |
. . . . . . . . 9
|
| 37 | 3 | ad2antrr 488 |
. . . . . . . . 9
|
| 38 | eluzle 9660 |
. . . . . . . . . 10
| |
| 39 | 38 | adantl 277 |
. . . . . . . . 9
|
| 40 | 1, 36, 37, 19, 23, 39 | resqrexlemnm 11329 |
. . . . . . . 8
|
| 41 | 2cn 9107 |
. . . . . . . . . . 11
| |
| 42 | expm1t 10712 |
. . . . . . . . . . 11
| |
| 43 | 41, 19, 42 | sylancr 414 |
. . . . . . . . . 10
|
| 44 | 43 | oveq2d 5960 |
. . . . . . . . 9
|
| 45 | 8 | a1i 9 |
. . . . . . . . . . . . . 14
|
| 46 | 18, 45 | ffvelcdmd 5716 |
. . . . . . . . . . . . 13
|
| 47 | 11 | a1i 9 |
. . . . . . . . . . . . 13
|
| 48 | 46, 47 | rpexpcld 10842 |
. . . . . . . . . . . 12
|
| 49 | 48, 28 | rpmulcld 9835 |
. . . . . . . . . . 11
|
| 50 | 49 | rpcnd 9820 |
. . . . . . . . . 10
|
| 51 | 41 | a1i 9 |
. . . . . . . . . . 11
|
| 52 | nnm1nn0 9336 |
. . . . . . . . . . . 12
| |
| 53 | 19, 52 | syl 14 |
. . . . . . . . . . 11
|
| 54 | 51, 53 | expcld 10818 |
. . . . . . . . . 10
|
| 55 | 2ap0 9129 |
. . . . . . . . . . . 12
| |
| 56 | 55 | a1i 9 |
. . . . . . . . . . 11
|
| 57 | 1zzd 9399 |
. . . . . . . . . . . 12
| |
| 58 | 29, 57 | zsubcld 9500 |
. . . . . . . . . . 11
|
| 59 | 51, 56, 58 | expap0d 10824 |
. . . . . . . . . 10
|
| 60 | 50, 54, 51, 59, 56 | divcanap5rd 8891 |
. . . . . . . . 9
|
| 61 | 44, 60 | eqtrd 2238 |
. . . . . . . 8
|
| 62 | 40, 61 | breqtrrd 4072 |
. . . . . . 7
|
| 63 | uzid 9662 |
. . . . . . . . . 10
| |
| 64 | 11, 63 | ax-mp 5 |
. . . . . . . . 9
|
| 65 | 19 | nnnn0d 9348 |
. . . . . . . . 9
|
| 66 | bernneq3 10807 |
. . . . . . . . 9
| |
| 67 | 64, 65, 66 | sylancr 414 |
. . . . . . . 8
|
| 68 | 33, 30, 27 | ltdiv2d 9842 |
. . . . . . . 8
|
| 69 | 67, 68 | mpbid 147 |
. . . . . . 7
|
| 70 | 26, 32, 35, 62, 69 | lttrd 8198 |
. . . . . 6
|
| 71 | 21, 25, 35 | ltsubadd2d 8616 |
. . . . . 6
|
| 72 | 70, 71 | mpbid 147 |
. . . . 5
|
| 73 | 21, 35 | readdcld 8102 |
. . . . . 6
|
| 74 | 25 | adantr 276 |
. . . . . . . 8
|
| 75 | 21 | adantr 276 |
. . . . . . . 8
|
| 76 | 36 | adantr 276 |
. . . . . . . . 9
|
| 77 | 37 | adantr 276 |
. . . . . . . . 9
|
| 78 | 19 | adantr 276 |
. . . . . . . . 9
|
| 79 | 23 | adantr 276 |
. . . . . . . . 9
|
| 80 | simpr 110 |
. . . . . . . . 9
| |
| 81 | 1, 76, 77, 78, 79, 80 | resqrexlemdecn 11323 |
. . . . . . . 8
|
| 82 | 74, 75, 81 | ltled 8191 |
. . . . . . 7
|
| 83 | fveq2 5576 |
. . . . . . . . 9
| |
| 84 | 83 | eqcomd 2211 |
. . . . . . . 8
|
| 85 | eqle 8164 |
. . . . . . . 8
| |
| 86 | 25, 84, 85 | syl2an 289 |
. . . . . . 7
|
| 87 | 23 | nnzd 9494 |
. . . . . . . . 9
|
| 88 | zleloe 9419 |
. . . . . . . . 9
| |
| 89 | 29, 87, 88 | syl2anc 411 |
. . . . . . . 8
|
| 90 | 39, 89 | mpbid 147 |
. . . . . . 7
|
| 91 | 82, 86, 90 | mpjaodan 800 |
. . . . . 6
|
| 92 | 21, 34 | ltaddrpd 9852 |
. . . . . 6
|
| 93 | 25, 21, 73, 91, 92 | lelttrd 8197 |
. . . . 5
|
| 94 | 72, 93 | jca 306 |
. . . 4
|
| 95 | 94 | ralrimiva 2579 |
. . 3
|
| 96 | 95 | ralrimiva 2579 |
. 2
|
| 97 | 7, 17, 96 | cvg1n 11297 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-rp 9776 df-seqfrec 10593 df-exp 10684 |
| This theorem is referenced by: resqrexlemex 11336 |
| Copyright terms: Public domain | W3C validator |