ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcvg Unicode version

Theorem resqrexlemcvg 10983
Description: Lemma for resqrex 10990. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcvg  |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
r  +  x )  /\  r  <  (
( F `  i
)  +  x ) ) )
Distinct variable groups:    y, A, z   
i, F, j, r, x    ph, i, j, r    ph, y, z    ph, x
Allowed substitution hints:    A( x, i, j, r)    F( y, z)

Proof of Theorem resqrexlemcvg
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . 4  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . 4  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . 4  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 10971 . . 3  |-  ( ph  ->  F : NN --> RR+ )
5 rpssre 9621 . . . 4  |-  RR+  C_  RR
65a1i 9 . . 3  |-  ( ph  -> 
RR+  C_  RR )
74, 6fssd 5360 . 2  |-  ( ph  ->  F : NN --> RR )
8 1nn 8889 . . . . . . 7  |-  1  e.  NN
98a1i 9 . . . . . 6  |-  ( ph  ->  1  e.  NN )
104, 9ffvelrnd 5632 . . . . 5  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
11 2z 9240 . . . . . 6  |-  2  e.  ZZ
1211a1i 9 . . . . 5  |-  ( ph  ->  2  e.  ZZ )
1310, 12rpexpcld 10633 . . . 4  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
14 2rp 9615 . . . . 5  |-  2  e.  RR+
1514a1i 9 . . . 4  |-  ( ph  ->  2  e.  RR+ )
1613, 15rpmulcld 9670 . . 3  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  x.  2 )  e.  RR+ )
1716, 15rpmulcld 9670 . 2  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  e.  RR+ )
184ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> RR+ )
19 simplr 525 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2018, 19ffvelrnd 5632 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR+ )
2120rpred 9653 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR )
22 eluznn 9559 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
2322adantll 473 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
2418, 23ffvelrnd 5632 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR+ )
2524rpred 9653 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR )
2621, 25resubcld 8300 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  e.  RR )
2717ad2antrr 485 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  e.  RR+ )
2814a1i 9 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  RR+ )
2919nnzd 9333 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  ZZ )
3028, 29rpexpcld 10633 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ n )  e.  RR+ )
3127, 30rpdivcld 9671 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  e.  RR+ )
3231rpred 9653 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  e.  RR )
3319nnrpd 9651 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
3427, 33rpdivcld 9671 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n )  e.  RR+ )
3534rpred 9653 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n )  e.  RR )
362ad2antrr 485 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  A  e.  RR )
373ad2antrr 485 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  0  <_  A )
38 eluzle 9499 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  n
)  ->  n  <_  k )
3938adantl 275 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <_  k )
401, 36, 37, 19, 23, 39resqrexlemnm 10982 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
41 2cn 8949 . . . . . . . . . . 11  |-  2  e.  CC
42 expm1t 10504 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  n  e.  NN )  ->  ( 2 ^ n
)  =  ( ( 2 ^ ( n  -  1 ) )  x.  2 ) )
4341, 19, 42sylancr 412 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ n )  =  ( ( 2 ^ ( n  -  1 ) )  x.  2 ) )
4443oveq2d 5869 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  =  ( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  (
( 2 ^ (
n  -  1 ) )  x.  2 ) ) )
458a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  NN )
4618, 45ffvelrnd 5632 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  1 )  e.  RR+ )
4711a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  ZZ )
4846, 47rpexpcld 10633 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
4948, 28rpmulcld 9670 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  1
) ^ 2 )  x.  2 )  e.  RR+ )
5049rpcnd 9655 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  1
) ^ 2 )  x.  2 )  e.  CC )
5141a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  CC )
52 nnm1nn0 9176 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
5319, 52syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  -  1 )  e. 
NN0 )
5451, 53expcld 10609 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ ( n  - 
1 ) )  e.  CC )
55 2ap0 8971 . . . . . . . . . . . 12  |-  2 #  0
5655a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2 #  0
)
57 1zzd 9239 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  ZZ )
5829, 57zsubcld 9339 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  -  1 )  e.  ZZ )
5951, 56, 58expap0d 10615 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ ( n  - 
1 ) ) #  0 )
6050, 54, 51, 59, 56divcanap5rd 8735 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( ( 2 ^ ( n  - 
1 ) )  x.  2 ) )  =  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
6144, 60eqtrd 2203 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  =  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
6240, 61breqtrrd 4017 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  (
2 ^ n ) ) )
63 uzid 9501 . . . . . . . . . 10  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
6411, 63ax-mp 5 . . . . . . . . 9  |-  2  e.  ( ZZ>= `  2 )
6519nnnn0d 9188 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN0 )
66 bernneq3 10598 . . . . . . . . 9  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  n  <  ( 2 ^ n
) )
6764, 65, 66sylancr 412 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <  ( 2 ^ n ) )
6833, 30, 27ltdiv2d 9677 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <  ( 2 ^ n
)  <->  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  / 
( 2 ^ n
) )  <  (
( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) )
6967, 68mpbid 146 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )
7026, 32, 35, 62, 69lttrd 8045 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )
7121, 25, 35ltsubadd2d 8462 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( F `
 k ) )  <  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  /  n )  <->  ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) ) )
7270, 71mpbid 146 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
7321, 35readdcld 7949 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  +  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) )  e.  RR )
7425adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  e.  RR )
7521adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  n )  e.  RR )
7636adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  A  e.  RR )
7737adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  0  <_  A )
7819adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  n  e.  NN )
7923adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  k  e.  NN )
80 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  n  <  k )
811, 76, 77, 78, 79, 80resqrexlemdecn 10976 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  <  ( F `  n )
)
8274, 75, 81ltled 8038 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  <_  ( F `  n )
)
83 fveq2 5496 . . . . . . . . 9  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
8483eqcomd 2176 . . . . . . . 8  |-  ( n  =  k  ->  ( F `  k )  =  ( F `  n ) )
85 eqle 8011 . . . . . . . 8  |-  ( ( ( F `  k
)  e.  RR  /\  ( F `  k )  =  ( F `  n ) )  -> 
( F `  k
)  <_  ( F `  n ) )
8625, 84, 85syl2an 287 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  =  k )  ->  ( F `  k )  <_  ( F `  n )
)
8723nnzd 9333 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  ZZ )
88 zleloe 9259 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( n  <_  k  <->  ( n  <  k  \/  n  =  k ) ) )
8929, 87, 88syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <_  k  <->  ( n  < 
k  \/  n  =  k ) ) )
9039, 89mpbid 146 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <  k  \/  n  =  k ) )
9182, 86, 90mpjaodan 793 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  <_  ( F `  n )
)
9221, 34ltaddrpd 9687 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
9325, 21, 73, 91, 92lelttrd 8044 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
9472, 93jca 304 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) ) )
9594ralrimiva 2543 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) ) )
9695ralrimiva 2543 . 2  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) ) )
977, 17, 96cvg1n 10950 1  |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
r  +  x )  /\  r  <  (
( F `  i
)  +  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    C_ wss 3121   {csn 3583   class class class wbr 3989    X. cxp 4609   -->wf 5194   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090   # cap 8500    / cdiv 8589   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   RR+crp 9610    seqcseq 10401   ^cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  resqrexlemex  10989
  Copyright terms: Public domain W3C validator