| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > resqrexlemcvg | Unicode version | ||
| Description: Lemma for resqrex 11191. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.) | 
| Ref | Expression | 
|---|---|
| resqrexlemex.seq | 
 | 
| resqrexlemex.a | 
 | 
| resqrexlemex.agt0 | 
 | 
| Ref | Expression | 
|---|---|
| resqrexlemcvg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resqrexlemex.seq | 
. . . 4
 | |
| 2 | resqrexlemex.a | 
. . . 4
 | |
| 3 | resqrexlemex.agt0 | 
. . . 4
 | |
| 4 | 1, 2, 3 | resqrexlemf 11172 | 
. . 3
 | 
| 5 | rpssre 9739 | 
. . . 4
 | |
| 6 | 5 | a1i 9 | 
. . 3
 | 
| 7 | 4, 6 | fssd 5420 | 
. 2
 | 
| 8 | 1nn 9001 | 
. . . . . . 7
 | |
| 9 | 8 | a1i 9 | 
. . . . . 6
 | 
| 10 | 4, 9 | ffvelcdmd 5698 | 
. . . . 5
 | 
| 11 | 2z 9354 | 
. . . . . 6
 | |
| 12 | 11 | a1i 9 | 
. . . . 5
 | 
| 13 | 10, 12 | rpexpcld 10789 | 
. . . 4
 | 
| 14 | 2rp 9733 | 
. . . . 5
 | |
| 15 | 14 | a1i 9 | 
. . . 4
 | 
| 16 | 13, 15 | rpmulcld 9788 | 
. . 3
 | 
| 17 | 16, 15 | rpmulcld 9788 | 
. 2
 | 
| 18 | 4 | ad2antrr 488 | 
. . . . . . . . . 10
 | 
| 19 | simplr 528 | 
. . . . . . . . . 10
 | |
| 20 | 18, 19 | ffvelcdmd 5698 | 
. . . . . . . . 9
 | 
| 21 | 20 | rpred 9771 | 
. . . . . . . 8
 | 
| 22 | eluznn 9674 | 
. . . . . . . . . . 11
 | |
| 23 | 22 | adantll 476 | 
. . . . . . . . . 10
 | 
| 24 | 18, 23 | ffvelcdmd 5698 | 
. . . . . . . . 9
 | 
| 25 | 24 | rpred 9771 | 
. . . . . . . 8
 | 
| 26 | 21, 25 | resubcld 8407 | 
. . . . . . 7
 | 
| 27 | 17 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 28 | 14 | a1i 9 | 
. . . . . . . . . 10
 | 
| 29 | 19 | nnzd 9447 | 
. . . . . . . . . 10
 | 
| 30 | 28, 29 | rpexpcld 10789 | 
. . . . . . . . 9
 | 
| 31 | 27, 30 | rpdivcld 9789 | 
. . . . . . . 8
 | 
| 32 | 31 | rpred 9771 | 
. . . . . . 7
 | 
| 33 | 19 | nnrpd 9769 | 
. . . . . . . . 9
 | 
| 34 | 27, 33 | rpdivcld 9789 | 
. . . . . . . 8
 | 
| 35 | 34 | rpred 9771 | 
. . . . . . 7
 | 
| 36 | 2 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 37 | 3 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 38 | eluzle 9613 | 
. . . . . . . . . 10
 | |
| 39 | 38 | adantl 277 | 
. . . . . . . . 9
 | 
| 40 | 1, 36, 37, 19, 23, 39 | resqrexlemnm 11183 | 
. . . . . . . 8
 | 
| 41 | 2cn 9061 | 
. . . . . . . . . . 11
 | |
| 42 | expm1t 10659 | 
. . . . . . . . . . 11
 | |
| 43 | 41, 19, 42 | sylancr 414 | 
. . . . . . . . . 10
 | 
| 44 | 43 | oveq2d 5938 | 
. . . . . . . . 9
 | 
| 45 | 8 | a1i 9 | 
. . . . . . . . . . . . . 14
 | 
| 46 | 18, 45 | ffvelcdmd 5698 | 
. . . . . . . . . . . . 13
 | 
| 47 | 11 | a1i 9 | 
. . . . . . . . . . . . 13
 | 
| 48 | 46, 47 | rpexpcld 10789 | 
. . . . . . . . . . . 12
 | 
| 49 | 48, 28 | rpmulcld 9788 | 
. . . . . . . . . . 11
 | 
| 50 | 49 | rpcnd 9773 | 
. . . . . . . . . 10
 | 
| 51 | 41 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 52 | nnm1nn0 9290 | 
. . . . . . . . . . . 12
 | |
| 53 | 19, 52 | syl 14 | 
. . . . . . . . . . 11
 | 
| 54 | 51, 53 | expcld 10765 | 
. . . . . . . . . 10
 | 
| 55 | 2ap0 9083 | 
. . . . . . . . . . . 12
 | |
| 56 | 55 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 57 | 1zzd 9353 | 
. . . . . . . . . . . 12
 | |
| 58 | 29, 57 | zsubcld 9453 | 
. . . . . . . . . . 11
 | 
| 59 | 51, 56, 58 | expap0d 10771 | 
. . . . . . . . . 10
 | 
| 60 | 50, 54, 51, 59, 56 | divcanap5rd 8845 | 
. . . . . . . . 9
 | 
| 61 | 44, 60 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 62 | 40, 61 | breqtrrd 4061 | 
. . . . . . 7
 | 
| 63 | uzid 9615 | 
. . . . . . . . . 10
 | |
| 64 | 11, 63 | ax-mp 5 | 
. . . . . . . . 9
 | 
| 65 | 19 | nnnn0d 9302 | 
. . . . . . . . 9
 | 
| 66 | bernneq3 10754 | 
. . . . . . . . 9
 | |
| 67 | 64, 65, 66 | sylancr 414 | 
. . . . . . . 8
 | 
| 68 | 33, 30, 27 | ltdiv2d 9795 | 
. . . . . . . 8
 | 
| 69 | 67, 68 | mpbid 147 | 
. . . . . . 7
 | 
| 70 | 26, 32, 35, 62, 69 | lttrd 8152 | 
. . . . . 6
 | 
| 71 | 21, 25, 35 | ltsubadd2d 8570 | 
. . . . . 6
 | 
| 72 | 70, 71 | mpbid 147 | 
. . . . 5
 | 
| 73 | 21, 35 | readdcld 8056 | 
. . . . . 6
 | 
| 74 | 25 | adantr 276 | 
. . . . . . . 8
 | 
| 75 | 21 | adantr 276 | 
. . . . . . . 8
 | 
| 76 | 36 | adantr 276 | 
. . . . . . . . 9
 | 
| 77 | 37 | adantr 276 | 
. . . . . . . . 9
 | 
| 78 | 19 | adantr 276 | 
. . . . . . . . 9
 | 
| 79 | 23 | adantr 276 | 
. . . . . . . . 9
 | 
| 80 | simpr 110 | 
. . . . . . . . 9
 | |
| 81 | 1, 76, 77, 78, 79, 80 | resqrexlemdecn 11177 | 
. . . . . . . 8
 | 
| 82 | 74, 75, 81 | ltled 8145 | 
. . . . . . 7
 | 
| 83 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 84 | 83 | eqcomd 2202 | 
. . . . . . . 8
 | 
| 85 | eqle 8118 | 
. . . . . . . 8
 | |
| 86 | 25, 84, 85 | syl2an 289 | 
. . . . . . 7
 | 
| 87 | 23 | nnzd 9447 | 
. . . . . . . . 9
 | 
| 88 | zleloe 9373 | 
. . . . . . . . 9
 | |
| 89 | 29, 87, 88 | syl2anc 411 | 
. . . . . . . 8
 | 
| 90 | 39, 89 | mpbid 147 | 
. . . . . . 7
 | 
| 91 | 82, 86, 90 | mpjaodan 799 | 
. . . . . 6
 | 
| 92 | 21, 34 | ltaddrpd 9805 | 
. . . . . 6
 | 
| 93 | 25, 21, 73, 91, 92 | lelttrd 8151 | 
. . . . 5
 | 
| 94 | 72, 93 | jca 306 | 
. . . 4
 | 
| 95 | 94 | ralrimiva 2570 | 
. . 3
 | 
| 96 | 95 | ralrimiva 2570 | 
. 2
 | 
| 97 | 7, 17, 96 | cvg1n 11151 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 | 
| This theorem is referenced by: resqrexlemex 11190 | 
| Copyright terms: Public domain | W3C validator |