| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemcvg | Unicode version | ||
| Description: Lemma for resqrex 11537. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq |
|
| resqrexlemex.a |
|
| resqrexlemex.agt0 |
|
| Ref | Expression |
|---|---|
| resqrexlemcvg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrexlemex.seq |
. . . 4
| |
| 2 | resqrexlemex.a |
. . . 4
| |
| 3 | resqrexlemex.agt0 |
. . . 4
| |
| 4 | 1, 2, 3 | resqrexlemf 11518 |
. . 3
|
| 5 | rpssre 9860 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 4, 6 | fssd 5486 |
. 2
|
| 8 | 1nn 9121 |
. . . . . . 7
| |
| 9 | 8 | a1i 9 |
. . . . . 6
|
| 10 | 4, 9 | ffvelcdmd 5771 |
. . . . 5
|
| 11 | 2z 9474 |
. . . . . 6
| |
| 12 | 11 | a1i 9 |
. . . . 5
|
| 13 | 10, 12 | rpexpcld 10919 |
. . . 4
|
| 14 | 2rp 9854 |
. . . . 5
| |
| 15 | 14 | a1i 9 |
. . . 4
|
| 16 | 13, 15 | rpmulcld 9909 |
. . 3
|
| 17 | 16, 15 | rpmulcld 9909 |
. 2
|
| 18 | 4 | ad2antrr 488 |
. . . . . . . . . 10
|
| 19 | simplr 528 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | ffvelcdmd 5771 |
. . . . . . . . 9
|
| 21 | 20 | rpred 9892 |
. . . . . . . 8
|
| 22 | eluznn 9795 |
. . . . . . . . . . 11
| |
| 23 | 22 | adantll 476 |
. . . . . . . . . 10
|
| 24 | 18, 23 | ffvelcdmd 5771 |
. . . . . . . . 9
|
| 25 | 24 | rpred 9892 |
. . . . . . . 8
|
| 26 | 21, 25 | resubcld 8527 |
. . . . . . 7
|
| 27 | 17 | ad2antrr 488 |
. . . . . . . . 9
|
| 28 | 14 | a1i 9 |
. . . . . . . . . 10
|
| 29 | 19 | nnzd 9568 |
. . . . . . . . . 10
|
| 30 | 28, 29 | rpexpcld 10919 |
. . . . . . . . 9
|
| 31 | 27, 30 | rpdivcld 9910 |
. . . . . . . 8
|
| 32 | 31 | rpred 9892 |
. . . . . . 7
|
| 33 | 19 | nnrpd 9890 |
. . . . . . . . 9
|
| 34 | 27, 33 | rpdivcld 9910 |
. . . . . . . 8
|
| 35 | 34 | rpred 9892 |
. . . . . . 7
|
| 36 | 2 | ad2antrr 488 |
. . . . . . . . 9
|
| 37 | 3 | ad2antrr 488 |
. . . . . . . . 9
|
| 38 | eluzle 9734 |
. . . . . . . . . 10
| |
| 39 | 38 | adantl 277 |
. . . . . . . . 9
|
| 40 | 1, 36, 37, 19, 23, 39 | resqrexlemnm 11529 |
. . . . . . . 8
|
| 41 | 2cn 9181 |
. . . . . . . . . . 11
| |
| 42 | expm1t 10789 |
. . . . . . . . . . 11
| |
| 43 | 41, 19, 42 | sylancr 414 |
. . . . . . . . . 10
|
| 44 | 43 | oveq2d 6017 |
. . . . . . . . 9
|
| 45 | 8 | a1i 9 |
. . . . . . . . . . . . . 14
|
| 46 | 18, 45 | ffvelcdmd 5771 |
. . . . . . . . . . . . 13
|
| 47 | 11 | a1i 9 |
. . . . . . . . . . . . 13
|
| 48 | 46, 47 | rpexpcld 10919 |
. . . . . . . . . . . 12
|
| 49 | 48, 28 | rpmulcld 9909 |
. . . . . . . . . . 11
|
| 50 | 49 | rpcnd 9894 |
. . . . . . . . . 10
|
| 51 | 41 | a1i 9 |
. . . . . . . . . . 11
|
| 52 | nnm1nn0 9410 |
. . . . . . . . . . . 12
| |
| 53 | 19, 52 | syl 14 |
. . . . . . . . . . 11
|
| 54 | 51, 53 | expcld 10895 |
. . . . . . . . . 10
|
| 55 | 2ap0 9203 |
. . . . . . . . . . . 12
| |
| 56 | 55 | a1i 9 |
. . . . . . . . . . 11
|
| 57 | 1zzd 9473 |
. . . . . . . . . . . 12
| |
| 58 | 29, 57 | zsubcld 9574 |
. . . . . . . . . . 11
|
| 59 | 51, 56, 58 | expap0d 10901 |
. . . . . . . . . 10
|
| 60 | 50, 54, 51, 59, 56 | divcanap5rd 8965 |
. . . . . . . . 9
|
| 61 | 44, 60 | eqtrd 2262 |
. . . . . . . 8
|
| 62 | 40, 61 | breqtrrd 4111 |
. . . . . . 7
|
| 63 | uzid 9736 |
. . . . . . . . . 10
| |
| 64 | 11, 63 | ax-mp 5 |
. . . . . . . . 9
|
| 65 | 19 | nnnn0d 9422 |
. . . . . . . . 9
|
| 66 | bernneq3 10884 |
. . . . . . . . 9
| |
| 67 | 64, 65, 66 | sylancr 414 |
. . . . . . . 8
|
| 68 | 33, 30, 27 | ltdiv2d 9916 |
. . . . . . . 8
|
| 69 | 67, 68 | mpbid 147 |
. . . . . . 7
|
| 70 | 26, 32, 35, 62, 69 | lttrd 8272 |
. . . . . 6
|
| 71 | 21, 25, 35 | ltsubadd2d 8690 |
. . . . . 6
|
| 72 | 70, 71 | mpbid 147 |
. . . . 5
|
| 73 | 21, 35 | readdcld 8176 |
. . . . . 6
|
| 74 | 25 | adantr 276 |
. . . . . . . 8
|
| 75 | 21 | adantr 276 |
. . . . . . . 8
|
| 76 | 36 | adantr 276 |
. . . . . . . . 9
|
| 77 | 37 | adantr 276 |
. . . . . . . . 9
|
| 78 | 19 | adantr 276 |
. . . . . . . . 9
|
| 79 | 23 | adantr 276 |
. . . . . . . . 9
|
| 80 | simpr 110 |
. . . . . . . . 9
| |
| 81 | 1, 76, 77, 78, 79, 80 | resqrexlemdecn 11523 |
. . . . . . . 8
|
| 82 | 74, 75, 81 | ltled 8265 |
. . . . . . 7
|
| 83 | fveq2 5627 |
. . . . . . . . 9
| |
| 84 | 83 | eqcomd 2235 |
. . . . . . . 8
|
| 85 | eqle 8238 |
. . . . . . . 8
| |
| 86 | 25, 84, 85 | syl2an 289 |
. . . . . . 7
|
| 87 | 23 | nnzd 9568 |
. . . . . . . . 9
|
| 88 | zleloe 9493 |
. . . . . . . . 9
| |
| 89 | 29, 87, 88 | syl2anc 411 |
. . . . . . . 8
|
| 90 | 39, 89 | mpbid 147 |
. . . . . . 7
|
| 91 | 82, 86, 90 | mpjaodan 803 |
. . . . . 6
|
| 92 | 21, 34 | ltaddrpd 9926 |
. . . . . 6
|
| 93 | 25, 21, 73, 91, 92 | lelttrd 8271 |
. . . . 5
|
| 94 | 72, 93 | jca 306 |
. . . 4
|
| 95 | 94 | ralrimiva 2603 |
. . 3
|
| 96 | 95 | ralrimiva 2603 |
. 2
|
| 97 | 7, 17, 96 | cvg1n 11497 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-rp 9850 df-seqfrec 10670 df-exp 10761 |
| This theorem is referenced by: resqrexlemex 11536 |
| Copyright terms: Public domain | W3C validator |