ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcvg Unicode version

Theorem resqrexlemcvg 10823
Description: Lemma for resqrex 10830. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcvg  |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
r  +  x )  /\  r  <  (
( F `  i
)  +  x ) ) )
Distinct variable groups:    y, A, z   
i, F, j, r, x    ph, i, j, r    ph, y, z    ph, x
Allowed substitution hints:    A( x, i, j, r)    F( y, z)

Proof of Theorem resqrexlemcvg
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . 4  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . 4  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . 4  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 10811 . . 3  |-  ( ph  ->  F : NN --> RR+ )
5 rpssre 9481 . . . 4  |-  RR+  C_  RR
65a1i 9 . . 3  |-  ( ph  -> 
RR+  C_  RR )
74, 6fssd 5293 . 2  |-  ( ph  ->  F : NN --> RR )
8 1nn 8755 . . . . . . 7  |-  1  e.  NN
98a1i 9 . . . . . 6  |-  ( ph  ->  1  e.  NN )
104, 9ffvelrnd 5564 . . . . 5  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
11 2z 9106 . . . . . 6  |-  2  e.  ZZ
1211a1i 9 . . . . 5  |-  ( ph  ->  2  e.  ZZ )
1310, 12rpexpcld 10479 . . . 4  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
14 2rp 9475 . . . . 5  |-  2  e.  RR+
1514a1i 9 . . . 4  |-  ( ph  ->  2  e.  RR+ )
1613, 15rpmulcld 9530 . . 3  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  x.  2 )  e.  RR+ )
1716, 15rpmulcld 9530 . 2  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  e.  RR+ )
184ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> RR+ )
19 simplr 520 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2018, 19ffvelrnd 5564 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR+ )
2120rpred 9513 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR )
22 eluznn 9421 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
2322adantll 468 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
2418, 23ffvelrnd 5564 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR+ )
2524rpred 9513 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR )
2621, 25resubcld 8167 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  e.  RR )
2717ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  e.  RR+ )
2814a1i 9 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  RR+ )
2919nnzd 9196 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  ZZ )
3028, 29rpexpcld 10479 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ n )  e.  RR+ )
3127, 30rpdivcld 9531 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  e.  RR+ )
3231rpred 9513 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  e.  RR )
3319nnrpd 9511 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
3427, 33rpdivcld 9531 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n )  e.  RR+ )
3534rpred 9513 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n )  e.  RR )
362ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  A  e.  RR )
373ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  0  <_  A )
38 eluzle 9362 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  n
)  ->  n  <_  k )
3938adantl 275 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <_  k )
401, 36, 37, 19, 23, 39resqrexlemnm 10822 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
41 2cn 8815 . . . . . . . . . . 11  |-  2  e.  CC
42 expm1t 10352 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  n  e.  NN )  ->  ( 2 ^ n
)  =  ( ( 2 ^ ( n  -  1 ) )  x.  2 ) )
4341, 19, 42sylancr 411 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ n )  =  ( ( 2 ^ ( n  -  1 ) )  x.  2 ) )
4443oveq2d 5798 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  =  ( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  (
( 2 ^ (
n  -  1 ) )  x.  2 ) ) )
458a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  NN )
4618, 45ffvelrnd 5564 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  1 )  e.  RR+ )
4711a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  ZZ )
4846, 47rpexpcld 10479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
4948, 28rpmulcld 9530 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  1
) ^ 2 )  x.  2 )  e.  RR+ )
5049rpcnd 9515 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  1
) ^ 2 )  x.  2 )  e.  CC )
5141a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  CC )
52 nnm1nn0 9042 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
5319, 52syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  -  1 )  e. 
NN0 )
5451, 53expcld 10455 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ ( n  - 
1 ) )  e.  CC )
55 2ap0 8837 . . . . . . . . . . . 12  |-  2 #  0
5655a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2 #  0
)
57 1zzd 9105 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  ZZ )
5829, 57zsubcld 9202 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  -  1 )  e.  ZZ )
5951, 56, 58expap0d 10461 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ ( n  - 
1 ) ) #  0 )
6050, 54, 51, 59, 56divcanap5rd 8602 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( ( 2 ^ ( n  - 
1 ) )  x.  2 ) )  =  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
6144, 60eqtrd 2173 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  =  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
6240, 61breqtrrd 3964 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  (
2 ^ n ) ) )
63 uzid 9364 . . . . . . . . . 10  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
6411, 63ax-mp 5 . . . . . . . . 9  |-  2  e.  ( ZZ>= `  2 )
6519nnnn0d 9054 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN0 )
66 bernneq3 10445 . . . . . . . . 9  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  n  <  ( 2 ^ n
) )
6764, 65, 66sylancr 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <  ( 2 ^ n ) )
6833, 30, 27ltdiv2d 9537 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <  ( 2 ^ n
)  <->  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  / 
( 2 ^ n
) )  <  (
( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) )
6967, 68mpbid 146 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )
7026, 32, 35, 62, 69lttrd 7912 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )
7121, 25, 35ltsubadd2d 8329 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( F `
 k ) )  <  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  /  n )  <->  ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) ) )
7270, 71mpbid 146 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
7321, 35readdcld 7819 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  +  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) )  e.  RR )
7425adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  e.  RR )
7521adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  n )  e.  RR )
7636adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  A  e.  RR )
7737adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  0  <_  A )
7819adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  n  e.  NN )
7923adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  k  e.  NN )
80 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  n  <  k )
811, 76, 77, 78, 79, 80resqrexlemdecn 10816 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  <  ( F `  n )
)
8274, 75, 81ltled 7905 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  <_  ( F `  n )
)
83 fveq2 5429 . . . . . . . . 9  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
8483eqcomd 2146 . . . . . . . 8  |-  ( n  =  k  ->  ( F `  k )  =  ( F `  n ) )
85 eqle 7879 . . . . . . . 8  |-  ( ( ( F `  k
)  e.  RR  /\  ( F `  k )  =  ( F `  n ) )  -> 
( F `  k
)  <_  ( F `  n ) )
8625, 84, 85syl2an 287 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  =  k )  ->  ( F `  k )  <_  ( F `  n )
)
8723nnzd 9196 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  ZZ )
88 zleloe 9125 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( n  <_  k  <->  ( n  <  k  \/  n  =  k ) ) )
8929, 87, 88syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <_  k  <->  ( n  < 
k  \/  n  =  k ) ) )
9039, 89mpbid 146 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <  k  \/  n  =  k ) )
9182, 86, 90mpjaodan 788 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  <_  ( F `  n )
)
9221, 34ltaddrpd 9547 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
9325, 21, 73, 91, 92lelttrd 7911 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
9472, 93jca 304 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) ) )
9594ralrimiva 2508 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) ) )
9695ralrimiva 2508 . 2  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) ) )
977, 17, 96cvg1n 10790 1  |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
r  +  x )  /\  r  <  (
( F `  i
)  +  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418    C_ wss 3076   {csn 3532   class class class wbr 3937    X. cxp 4545   -->wf 5127   ` cfv 5131  (class class class)co 5782    e. cmpo 5784   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825    - cmin 7957   # cap 8367    / cdiv 8456   NNcn 8744   2c2 8795   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   RR+crp 9470    seqcseq 10249   ^cexp 10323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324
This theorem is referenced by:  resqrexlemex  10829
  Copyright terms: Public domain W3C validator