ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcvg Unicode version

Theorem resqrexlemcvg 11012
Description: Lemma for resqrex 11019. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcvg  |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
r  +  x )  /\  r  <  (
( F `  i
)  +  x ) ) )
Distinct variable groups:    y, A, z   
i, F, j, r, x    ph, i, j, r    ph, y, z    ph, x
Allowed substitution hints:    A( x, i, j, r)    F( y, z)

Proof of Theorem resqrexlemcvg
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . 4  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . 4  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . 4  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 11000 . . 3  |-  ( ph  ->  F : NN --> RR+ )
5 rpssre 9651 . . . 4  |-  RR+  C_  RR
65a1i 9 . . 3  |-  ( ph  -> 
RR+  C_  RR )
74, 6fssd 5374 . 2  |-  ( ph  ->  F : NN --> RR )
8 1nn 8919 . . . . . . 7  |-  1  e.  NN
98a1i 9 . . . . . 6  |-  ( ph  ->  1  e.  NN )
104, 9ffvelcdmd 5648 . . . . 5  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
11 2z 9270 . . . . . 6  |-  2  e.  ZZ
1211a1i 9 . . . . 5  |-  ( ph  ->  2  e.  ZZ )
1310, 12rpexpcld 10663 . . . 4  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
14 2rp 9645 . . . . 5  |-  2  e.  RR+
1514a1i 9 . . . 4  |-  ( ph  ->  2  e.  RR+ )
1613, 15rpmulcld 9700 . . 3  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  x.  2 )  e.  RR+ )
1716, 15rpmulcld 9700 . 2  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  e.  RR+ )
184ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> RR+ )
19 simplr 528 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2018, 19ffvelcdmd 5648 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR+ )
2120rpred 9683 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR )
22 eluznn 9589 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
2322adantll 476 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
2418, 23ffvelcdmd 5648 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR+ )
2524rpred 9683 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR )
2621, 25resubcld 8328 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  e.  RR )
2717ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  e.  RR+ )
2814a1i 9 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  RR+ )
2919nnzd 9363 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  ZZ )
3028, 29rpexpcld 10663 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ n )  e.  RR+ )
3127, 30rpdivcld 9701 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  e.  RR+ )
3231rpred 9683 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  e.  RR )
3319nnrpd 9681 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
3427, 33rpdivcld 9701 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n )  e.  RR+ )
3534rpred 9683 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n )  e.  RR )
362ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  A  e.  RR )
373ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  0  <_  A )
38 eluzle 9529 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  n
)  ->  n  <_  k )
3938adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <_  k )
401, 36, 37, 19, 23, 39resqrexlemnm 11011 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
41 2cn 8979 . . . . . . . . . . 11  |-  2  e.  CC
42 expm1t 10534 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  n  e.  NN )  ->  ( 2 ^ n
)  =  ( ( 2 ^ ( n  -  1 ) )  x.  2 ) )
4341, 19, 42sylancr 414 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ n )  =  ( ( 2 ^ ( n  -  1 ) )  x.  2 ) )
4443oveq2d 5885 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  =  ( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  (
( 2 ^ (
n  -  1 ) )  x.  2 ) ) )
458a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  NN )
4618, 45ffvelcdmd 5648 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  1 )  e.  RR+ )
4711a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  ZZ )
4846, 47rpexpcld 10663 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
4948, 28rpmulcld 9700 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  1
) ^ 2 )  x.  2 )  e.  RR+ )
5049rpcnd 9685 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  1
) ^ 2 )  x.  2 )  e.  CC )
5141a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  CC )
52 nnm1nn0 9206 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
5319, 52syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  -  1 )  e. 
NN0 )
5451, 53expcld 10639 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ ( n  - 
1 ) )  e.  CC )
55 2ap0 9001 . . . . . . . . . . . 12  |-  2 #  0
5655a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2 #  0
)
57 1zzd 9269 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  ZZ )
5829, 57zsubcld 9369 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  -  1 )  e.  ZZ )
5951, 56, 58expap0d 10645 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ ( n  - 
1 ) ) #  0 )
6050, 54, 51, 59, 56divcanap5rd 8764 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( ( 2 ^ ( n  - 
1 ) )  x.  2 ) )  =  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
6144, 60eqtrd 2210 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  =  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
6240, 61breqtrrd 4028 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  (
2 ^ n ) ) )
63 uzid 9531 . . . . . . . . . 10  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
6411, 63ax-mp 5 . . . . . . . . 9  |-  2  e.  ( ZZ>= `  2 )
6519nnnn0d 9218 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN0 )
66 bernneq3 10628 . . . . . . . . 9  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  n  <  ( 2 ^ n
) )
6764, 65, 66sylancr 414 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <  ( 2 ^ n ) )
6833, 30, 27ltdiv2d 9707 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <  ( 2 ^ n
)  <->  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  / 
( 2 ^ n
) )  <  (
( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) )
6967, 68mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )
7026, 32, 35, 62, 69lttrd 8073 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )
7121, 25, 35ltsubadd2d 8490 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( F `
 k ) )  <  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  /  n )  <->  ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) ) )
7270, 71mpbid 147 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
7321, 35readdcld 7977 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  +  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) )  e.  RR )
7425adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  e.  RR )
7521adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  n )  e.  RR )
7636adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  A  e.  RR )
7737adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  0  <_  A )
7819adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  n  e.  NN )
7923adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  k  e.  NN )
80 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  n  <  k )
811, 76, 77, 78, 79, 80resqrexlemdecn 11005 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  <  ( F `  n )
)
8274, 75, 81ltled 8066 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  <_  ( F `  n )
)
83 fveq2 5511 . . . . . . . . 9  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
8483eqcomd 2183 . . . . . . . 8  |-  ( n  =  k  ->  ( F `  k )  =  ( F `  n ) )
85 eqle 8039 . . . . . . . 8  |-  ( ( ( F `  k
)  e.  RR  /\  ( F `  k )  =  ( F `  n ) )  -> 
( F `  k
)  <_  ( F `  n ) )
8625, 84, 85syl2an 289 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  =  k )  ->  ( F `  k )  <_  ( F `  n )
)
8723nnzd 9363 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  ZZ )
88 zleloe 9289 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( n  <_  k  <->  ( n  <  k  \/  n  =  k ) ) )
8929, 87, 88syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <_  k  <->  ( n  < 
k  \/  n  =  k ) ) )
9039, 89mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <  k  \/  n  =  k ) )
9182, 86, 90mpjaodan 798 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  <_  ( F `  n )
)
9221, 34ltaddrpd 9717 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
9325, 21, 73, 91, 92lelttrd 8072 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
9472, 93jca 306 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) ) )
9594ralrimiva 2550 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) ) )
9695ralrimiva 2550 . 2  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) ) )
977, 17, 96cvg1n 10979 1  |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
r  +  x )  /\  r  <  (
( F `  i
)  +  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3129   {csn 3591   class class class wbr 4000    X. cxp 4621   -->wf 5208   ` cfv 5212  (class class class)co 5869    e. cmpo 5871   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118   # cap 8528    / cdiv 8618   NNcn 8908   2c2 8959   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517   RR+crp 9640    seqcseq 10431   ^cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  resqrexlemex  11018
  Copyright terms: Public domain W3C validator