ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcvg Unicode version

Theorem resqrexlemcvg 11445
Description: Lemma for resqrex 11452. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcvg  |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
r  +  x )  /\  r  <  (
( F `  i
)  +  x ) ) )
Distinct variable groups:    y, A, z   
i, F, j, r, x    ph, i, j, r    ph, y, z    ph, x
Allowed substitution hints:    A( x, i, j, r)    F( y, z)

Proof of Theorem resqrexlemcvg
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . 4  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . 4  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . 4  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 11433 . . 3  |-  ( ph  ->  F : NN --> RR+ )
5 rpssre 9821 . . . 4  |-  RR+  C_  RR
65a1i 9 . . 3  |-  ( ph  -> 
RR+  C_  RR )
74, 6fssd 5458 . 2  |-  ( ph  ->  F : NN --> RR )
8 1nn 9082 . . . . . . 7  |-  1  e.  NN
98a1i 9 . . . . . 6  |-  ( ph  ->  1  e.  NN )
104, 9ffvelcdmd 5739 . . . . 5  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
11 2z 9435 . . . . . 6  |-  2  e.  ZZ
1211a1i 9 . . . . 5  |-  ( ph  ->  2  e.  ZZ )
1310, 12rpexpcld 10879 . . . 4  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
14 2rp 9815 . . . . 5  |-  2  e.  RR+
1514a1i 9 . . . 4  |-  ( ph  ->  2  e.  RR+ )
1613, 15rpmulcld 9870 . . 3  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  x.  2 )  e.  RR+ )
1716, 15rpmulcld 9870 . 2  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  e.  RR+ )
184ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> RR+ )
19 simplr 528 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2018, 19ffvelcdmd 5739 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR+ )
2120rpred 9853 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR )
22 eluznn 9756 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
2322adantll 476 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
2418, 23ffvelcdmd 5739 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR+ )
2524rpred 9853 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR )
2621, 25resubcld 8488 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  e.  RR )
2717ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  e.  RR+ )
2814a1i 9 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  RR+ )
2919nnzd 9529 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  ZZ )
3028, 29rpexpcld 10879 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ n )  e.  RR+ )
3127, 30rpdivcld 9871 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  e.  RR+ )
3231rpred 9853 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  e.  RR )
3319nnrpd 9851 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
3427, 33rpdivcld 9871 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n )  e.  RR+ )
3534rpred 9853 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n )  e.  RR )
362ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  A  e.  RR )
373ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  0  <_  A )
38 eluzle 9695 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  n
)  ->  n  <_  k )
3938adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <_  k )
401, 36, 37, 19, 23, 39resqrexlemnm 11444 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
41 2cn 9142 . . . . . . . . . . 11  |-  2  e.  CC
42 expm1t 10749 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  n  e.  NN )  ->  ( 2 ^ n
)  =  ( ( 2 ^ ( n  -  1 ) )  x.  2 ) )
4341, 19, 42sylancr 414 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ n )  =  ( ( 2 ^ ( n  -  1 ) )  x.  2 ) )
4443oveq2d 5983 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  =  ( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  (
( 2 ^ (
n  -  1 ) )  x.  2 ) ) )
458a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  NN )
4618, 45ffvelcdmd 5739 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  1 )  e.  RR+ )
4711a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  ZZ )
4846, 47rpexpcld 10879 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
4948, 28rpmulcld 9870 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  1
) ^ 2 )  x.  2 )  e.  RR+ )
5049rpcnd 9855 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  1
) ^ 2 )  x.  2 )  e.  CC )
5141a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2  e.  CC )
52 nnm1nn0 9371 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
5319, 52syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  -  1 )  e. 
NN0 )
5451, 53expcld 10855 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ ( n  - 
1 ) )  e.  CC )
55 2ap0 9164 . . . . . . . . . . . 12  |-  2 #  0
5655a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  2 #  0
)
57 1zzd 9434 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  ZZ )
5829, 57zsubcld 9535 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  -  1 )  e.  ZZ )
5951, 56, 58expap0d 10861 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2 ^ ( n  - 
1 ) ) #  0 )
6050, 54, 51, 59, 56divcanap5rd 8926 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( ( 2 ^ ( n  - 
1 ) )  x.  2 ) )  =  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
6144, 60eqtrd 2240 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  =  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( n  -  1 ) ) ) )
6240, 61breqtrrd 4087 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  (
2 ^ n ) ) )
63 uzid 9697 . . . . . . . . . 10  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
6411, 63ax-mp 5 . . . . . . . . 9  |-  2  e.  ( ZZ>= `  2 )
6519nnnn0d 9383 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN0 )
66 bernneq3 10844 . . . . . . . . 9  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  n  <  ( 2 ^ n
) )
6764, 65, 66sylancr 414 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <  ( 2 ^ n ) )
6833, 30, 27ltdiv2d 9877 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <  ( 2 ^ n
)  <->  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  / 
( 2 ^ n
) )  <  (
( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) )
6967, 68mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  ( 2 ^ n ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )
7026, 32, 35, 62, 69lttrd 8233 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  -  ( F `  k ) )  < 
( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )
7121, 25, 35ltsubadd2d 8651 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( F `
 k ) )  <  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  /  n )  <->  ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) ) )
7270, 71mpbid 147 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
7321, 35readdcld 8137 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  +  ( ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) )  e.  RR )
7425adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  e.  RR )
7521adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  n )  e.  RR )
7636adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  A  e.  RR )
7737adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  0  <_  A )
7819adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  n  e.  NN )
7923adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  k  e.  NN )
80 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  n  <  k )
811, 76, 77, 78, 79, 80resqrexlemdecn 11438 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  <  ( F `  n )
)
8274, 75, 81ltled 8226 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  <  k
)  ->  ( F `  k )  <_  ( F `  n )
)
83 fveq2 5599 . . . . . . . . 9  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
8483eqcomd 2213 . . . . . . . 8  |-  ( n  =  k  ->  ( F `  k )  =  ( F `  n ) )
85 eqle 8199 . . . . . . . 8  |-  ( ( ( F `  k
)  e.  RR  /\  ( F `  k )  =  ( F `  n ) )  -> 
( F `  k
)  <_  ( F `  n ) )
8625, 84, 85syl2an 289 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  /\  n  =  k )  ->  ( F `  k )  <_  ( F `  n )
)
8723nnzd 9529 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  ZZ )
88 zleloe 9454 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( n  <_  k  <->  ( n  <  k  \/  n  =  k ) ) )
8929, 87, 88syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <_  k  <->  ( n  < 
k  \/  n  =  k ) ) )
9039, 89mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <  k  \/  n  =  k ) )
9182, 86, 90mpjaodan 800 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  <_  ( F `  n )
)
9221, 34ltaddrpd 9887 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
9325, 21, 73, 91, 92lelttrd 8232 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) )
9472, 93jca 306 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) ) )
9594ralrimiva 2581 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( ( ( ( ( F `
 1 ) ^
2 )  x.  2 )  x.  2 )  /  n ) ) ) )
9695ralrimiva 2581 . 2  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( ( ( ( ( F `  1
) ^ 2 )  x.  2 )  x.  2 )  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  x.  2 )  /  n ) ) ) )
977, 17, 96cvg1n 11412 1  |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
r  +  x )  /\  r  <  (
( F `  i
)  +  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487    C_ wss 3174   {csn 3643   class class class wbr 4059    X. cxp 4691   -->wf 5286   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278   # cap 8689    / cdiv 8780   NNcn 9071   2c2 9122   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   RR+crp 9810    seqcseq 10629   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  resqrexlemex  11451
  Copyright terms: Public domain W3C validator