| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnrp | Unicode version | ||
| Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nnrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 8997 |
. 2
| |
| 2 | nngt0 9015 |
. 2
| |
| 3 | elrp 9730 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 df-rp 9729 |
| This theorem is referenced by: nnrpd 9769 nn0ledivnn 9842 adddivflid 10382 divfl0 10386 nnesq 10751 bcrpcl 10845 expcnvap0 11667 dvdsmodexp 11960 flodddiv4 12101 isprm6 12315 sqrt2irr 12330 pythagtriplem13 12445 4sqlem12 12571 modxai 12585 cxpexpnn 15132 logbgcd1irr 15203 sqrt2cxp2logb9e3 15211 gausslemma2dlem1a 15299 gausslemma2dlem4 15305 |
| Copyright terms: Public domain | W3C validator |