ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrp Unicode version

Theorem nnrp 9729
Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
Assertion
Ref Expression
nnrp  |-  ( A  e.  NN  ->  A  e.  RR+ )

Proof of Theorem nnrp
StepHypRef Expression
1 nnre 8989 . 2  |-  ( A  e.  NN  ->  A  e.  RR )
2 nngt0 9007 . 2  |-  ( A  e.  NN  ->  0  <  A )
3 elrp 9721 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
41, 2, 3sylanbrc 417 1  |-  ( A  e.  NN  ->  A  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   class class class wbr 4029   RRcr 7871   0cc0 7872    < clt 8054   NNcn 8982   RR+crp 9719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-iota 5215  df-fv 5262  df-ov 5921  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-inn 8983  df-rp 9720
This theorem is referenced by:  nnrpd  9760  nn0ledivnn  9833  adddivflid  10361  divfl0  10365  nnesq  10730  bcrpcl  10824  expcnvap0  11645  dvdsmodexp  11938  flodddiv4  12075  isprm6  12285  sqrt2irr  12300  pythagtriplem13  12414  4sqlem12  12540  cxpexpnn  15031  logbgcd1irr  15099  sqrt2cxp2logb9e3  15107  gausslemma2dlem1a  15174  gausslemma2dlem4  15180
  Copyright terms: Public domain W3C validator