ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrp Unicode version

Theorem nnrp 9399
Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
Assertion
Ref Expression
nnrp  |-  ( A  e.  NN  ->  A  e.  RR+ )

Proof of Theorem nnrp
StepHypRef Expression
1 nnre 8684 . 2  |-  ( A  e.  NN  ->  A  e.  RR )
2 nngt0 8702 . 2  |-  ( A  e.  NN  ->  0  <  A )
3 elrp 9392 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
41, 2, 3sylanbrc 411 1  |-  ( A  e.  NN  ->  A  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1463   class class class wbr 3897   RRcr 7583   0cc0 7584    < clt 7764   NNcn 8677   RR+crp 9390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1re 7678  ax-addrcl 7681  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-xp 4513  df-cnv 4515  df-iota 5056  df-fv 5099  df-ov 5743  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-inn 8678  df-rp 9391
This theorem is referenced by:  nnrpd  9428  nn0ledivnn  9494  adddivflid  10005  divfl0  10009  nnesq  10351  bcrpcl  10439  expcnvap0  11211  flodddiv4  11527  isprm6  11721  sqrt2irr  11736
  Copyright terms: Public domain W3C validator