ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrp Unicode version

Theorem nnrp 9663
Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
Assertion
Ref Expression
nnrp  |-  ( A  e.  NN  ->  A  e.  RR+ )

Proof of Theorem nnrp
StepHypRef Expression
1 nnre 8926 . 2  |-  ( A  e.  NN  ->  A  e.  RR )
2 nngt0 8944 . 2  |-  ( A  e.  NN  ->  0  <  A )
3 elrp 9655 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
41, 2, 3sylanbrc 417 1  |-  ( A  e.  NN  ->  A  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   class class class wbr 4004   RRcr 7810   0cc0 7811    < clt 7992   NNcn 8919   RR+crp 9653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-xp 4633  df-cnv 4635  df-iota 5179  df-fv 5225  df-ov 5878  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-inn 8920  df-rp 9654
This theorem is referenced by:  nnrpd  9694  nn0ledivnn  9767  adddivflid  10292  divfl0  10296  nnesq  10640  bcrpcl  10733  expcnvap0  11510  dvdsmodexp  11802  flodddiv4  11939  isprm6  12147  sqrt2irr  12162  pythagtriplem13  12276  cxpexpnn  14320  logbgcd1irr  14388  sqrt2cxp2logb9e3  14396
  Copyright terms: Public domain W3C validator