| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0 | Unicode version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 9747 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-rp 9746 |
| This theorem is referenced by: rpge0 9758 rpap0 9762 rpgecl 9774 0nrp 9781 rpgt0d 9791 addlelt 9860 rpsqrtcl 11223 rpmaxcl 11405 rpmincl 11420 xrminrpcl 11456 climconst 11472 sinltxirr 11943 blcntrps 14735 blcntr 14736 bdmet 14822 bdmopn 14824 reeff1o 15093 coseq00topi 15155 coseq0negpitopi 15156 |
| Copyright terms: Public domain | W3C validator |