| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0 | Unicode version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 9797 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-rp 9796 |
| This theorem is referenced by: rpge0 9808 rpap0 9812 rpgecl 9824 0nrp 9831 rpgt0d 9841 addlelt 9910 rpsqrtcl 11427 rpmaxcl 11609 rpmincl 11624 xrminrpcl 11660 climconst 11676 sinltxirr 12147 blcntrps 14962 blcntr 14963 bdmet 15049 bdmopn 15051 reeff1o 15320 coseq00topi 15382 coseq0negpitopi 15383 |
| Copyright terms: Public domain | W3C validator |