![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpgt0 | Unicode version |
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpgt0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 9685 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simprbi 275 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rab 2477 df-v 2754 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-rp 9684 |
This theorem is referenced by: rpge0 9696 rpap0 9700 rpgecl 9712 0nrp 9719 rpgt0d 9729 addlelt 9798 rpsqrtcl 11082 rpmaxcl 11264 rpmincl 11278 xrminrpcl 11314 climconst 11330 blcntrps 14372 blcntr 14373 bdmet 14459 bdmopn 14461 reeff1o 14651 coseq00topi 14713 coseq0negpitopi 14714 |
Copyright terms: Public domain | W3C validator |