ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgt0 Unicode version

Theorem rpgt0 9731
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
rpgt0  |-  ( A  e.  RR+  ->  0  < 
A )

Proof of Theorem rpgt0
StepHypRef Expression
1 elrp 9721 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
21simprbi 275 1  |-  ( A  e.  RR+  ->  0  < 
A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   class class class wbr 4029   RRcr 7871   0cc0 7872    < clt 8054   RR+crp 9719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-rp 9720
This theorem is referenced by:  rpge0  9732  rpap0  9736  rpgecl  9748  0nrp  9755  rpgt0d  9765  addlelt  9834  rpsqrtcl  11185  rpmaxcl  11367  rpmincl  11381  xrminrpcl  11417  climconst  11433  sinltxirr  11904  blcntrps  14583  blcntr  14584  bdmet  14670  bdmopn  14672  reeff1o  14908  coseq00topi  14970  coseq0negpitopi  14971
  Copyright terms: Public domain W3C validator