ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgt0 Unicode version

Theorem rpgt0 9667
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
rpgt0  |-  ( A  e.  RR+  ->  0  < 
A )

Proof of Theorem rpgt0
StepHypRef Expression
1 elrp 9657 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
21simprbi 275 1  |-  ( A  e.  RR+  ->  0  < 
A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   class class class wbr 4005   RRcr 7812   0cc0 7813    < clt 7994   RR+crp 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-rp 9656
This theorem is referenced by:  rpge0  9668  rpap0  9672  rpgecl  9684  0nrp  9691  rpgt0d  9701  addlelt  9770  rpsqrtcl  11052  rpmaxcl  11234  rpmincl  11248  xrminrpcl  11284  climconst  11300  blcntrps  14000  blcntr  14001  bdmet  14087  bdmopn  14089  reeff1o  14279  coseq00topi  14341  coseq0negpitopi  14342
  Copyright terms: Public domain W3C validator