ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgt0 Unicode version

Theorem rpgt0 9857
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
rpgt0  |-  ( A  e.  RR+  ->  0  < 
A )

Proof of Theorem rpgt0
StepHypRef Expression
1 elrp 9847 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
21simprbi 275 1  |-  ( A  e.  RR+  ->  0  < 
A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   class class class wbr 4082   RRcr 7994   0cc0 7995    < clt 8177   RR+crp 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-rp 9846
This theorem is referenced by:  rpge0  9858  rpap0  9862  rpgecl  9874  0nrp  9881  rpgt0d  9891  addlelt  9960  rpsqrtcl  11547  rpmaxcl  11729  rpmincl  11744  xrminrpcl  11780  climconst  11796  sinltxirr  12267  blcntrps  15083  blcntr  15084  bdmet  15170  bdmopn  15172  reeff1o  15441  coseq00topi  15503  coseq0negpitopi  15504
  Copyright terms: Public domain W3C validator