Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpgt0 | Unicode version |
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpgt0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 9591 | . 2 | |
2 | 1 | simprbi 273 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 class class class wbr 3982 cr 7752 cc0 7753 clt 7933 crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-rp 9590 |
This theorem is referenced by: rpge0 9602 rpap0 9606 rpgecl 9618 0nrp 9625 rpgt0d 9635 addlelt 9704 rpsqrtcl 10983 rpmaxcl 11165 rpmincl 11179 xrminrpcl 11215 climconst 11231 blcntrps 13055 blcntr 13056 bdmet 13142 bdmopn 13144 reeff1o 13334 coseq00topi 13396 coseq0negpitopi 13397 |
Copyright terms: Public domain | W3C validator |