| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0 | Unicode version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 9847 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-rp 9846 |
| This theorem is referenced by: rpge0 9858 rpap0 9862 rpgecl 9874 0nrp 9881 rpgt0d 9891 addlelt 9960 rpsqrtcl 11547 rpmaxcl 11729 rpmincl 11744 xrminrpcl 11780 climconst 11796 sinltxirr 12267 blcntrps 15083 blcntr 15084 bdmet 15170 bdmopn 15172 reeff1o 15441 coseq00topi 15503 coseq0negpitopi 15504 |
| Copyright terms: Public domain | W3C validator |