ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onprc Unicode version

Theorem onprc 4618
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4552), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
onprc  |-  -.  On  e.  _V

Proof of Theorem onprc
StepHypRef Expression
1 ordon 4552 . . 3  |-  Ord  On
2 ordirr 4608 . . 3  |-  ( Ord 
On  ->  -.  On  e.  On )
31, 2ax-mp 5 . 2  |-  -.  On  e.  On
4 elong 4438 . . 3  |-  ( On  e.  _V  ->  ( On  e.  On  <->  Ord  On ) )
51, 4mpbiri 168 . 2  |-  ( On  e.  _V  ->  On  e.  On )
63, 5mto 664 1  |-  -.  On  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2178   _Vcvv 2776   Ord word 4427   Oncon0 4428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-sn 3649  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433
This theorem is referenced by:  sucon  4619
  Copyright terms: Public domain W3C validator