ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onprc Unicode version

Theorem onprc 4511
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4445), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
onprc  |-  -.  On  e.  _V

Proof of Theorem onprc
StepHypRef Expression
1 ordon 4445 . . 3  |-  Ord  On
2 ordirr 4501 . . 3  |-  ( Ord 
On  ->  -.  On  e.  On )
31, 2ax-mp 5 . 2  |-  -.  On  e.  On
4 elong 4333 . . 3  |-  ( On  e.  _V  ->  ( On  e.  On  <->  Ord  On ) )
51, 4mpbiri 167 . 2  |-  ( On  e.  _V  ->  On  e.  On )
63, 5mto 652 1  |-  -.  On  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2128   _Vcvv 2712   Ord word 4322   Oncon0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-setind 4496
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-in 3108  df-ss 3115  df-sn 3566  df-uni 3773  df-tr 4063  df-iord 4326  df-on 4328
This theorem is referenced by:  sucon  4512
  Copyright terms: Public domain W3C validator