ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onprc Unicode version

Theorem onprc 4600
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4534), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
onprc  |-  -.  On  e.  _V

Proof of Theorem onprc
StepHypRef Expression
1 ordon 4534 . . 3  |-  Ord  On
2 ordirr 4590 . . 3  |-  ( Ord 
On  ->  -.  On  e.  On )
31, 2ax-mp 5 . 2  |-  -.  On  e.  On
4 elong 4420 . . 3  |-  ( On  e.  _V  ->  ( On  e.  On  <->  Ord  On ) )
51, 4mpbiri 168 . 2  |-  ( On  e.  _V  ->  On  e.  On )
63, 5mto 664 1  |-  -.  On  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2176   _Vcvv 2772   Ord word 4409   Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-sn 3639  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415
This theorem is referenced by:  sucon  4601
  Copyright terms: Public domain W3C validator