Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onprc | Unicode version |
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4463), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
onprc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordon 4463 | . . 3 | |
2 | ordirr 4519 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | elong 4351 | . . 3 | |
5 | 1, 4 | mpbiri 167 | . 2 |
6 | 3, 5 | mto 652 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wcel 2136 cvv 2726 word 4340 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-sn 3582 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: sucon 4530 |
Copyright terms: Public domain | W3C validator |