ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s5eqd Unicode version

Theorem s5eqd 11266
Description: Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1  |-  ( ph  ->  A  =  N )
s2eqd.2  |-  ( ph  ->  B  =  O )
s3eqd.3  |-  ( ph  ->  C  =  P )
s4eqd.4  |-  ( ph  ->  D  =  Q )
s5eqd.5  |-  ( ph  ->  E  =  R )
Assertion
Ref Expression
s5eqd  |-  ( ph  ->  <" A B C D E ">  =  <" N O P Q R "> )

Proof of Theorem s5eqd
StepHypRef Expression
1 s2eqd.1 . . . 4  |-  ( ph  ->  A  =  N )
2 s2eqd.2 . . . 4  |-  ( ph  ->  B  =  O )
3 s3eqd.3 . . . 4  |-  ( ph  ->  C  =  P )
4 s4eqd.4 . . . 4  |-  ( ph  ->  D  =  Q )
51, 2, 3, 4s4eqd 11265 . . 3  |-  ( ph  ->  <" A B C D ">  =  <" N O P Q "> )
6 s5eqd.5 . . . 4  |-  ( ph  ->  E  =  R )
76s1eqd 11114 . . 3  |-  ( ph  ->  <" E ">  =  <" R "> )
85, 7oveq12d 5987 . 2  |-  ( ph  ->  ( <" A B C D "> ++  <" E "> )  =  ( <" N O P Q "> ++  <" R "> ) )
9 df-s5 11252 . 2  |-  <" A B C D E ">  =  ( <" A B C D "> ++  <" E "> )
10 df-s5 11252 . 2  |-  <" N O P Q R ">  =  ( <" N O P Q "> ++  <" R "> )
118, 9, 103eqtr4g 2265 1  |-  ( ph  ->  <" A B C D E ">  =  <" N O P Q R "> )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373  (class class class)co 5969   ++ cconcat 11086   <"cs1 11109   <"cs4 11244   <"cs5 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2779  df-un 3179  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-br 4061  df-iota 5252  df-fv 5299  df-ov 5972  df-s1 11110  df-s2 11249  df-s3 11250  df-s4 11251  df-s5 11252
This theorem is referenced by:  s6eqd  11267
  Copyright terms: Public domain W3C validator