ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s6eqd Unicode version

Theorem s6eqd 11306
Description: Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1  |-  ( ph  ->  A  =  N )
s2eqd.2  |-  ( ph  ->  B  =  O )
s3eqd.3  |-  ( ph  ->  C  =  P )
s4eqd.4  |-  ( ph  ->  D  =  Q )
s5eqd.5  |-  ( ph  ->  E  =  R )
s6eqd.6  |-  ( ph  ->  F  =  S )
Assertion
Ref Expression
s6eqd  |-  ( ph  ->  <" A B C D E F ">  =  <" N O P Q R S "> )

Proof of Theorem s6eqd
StepHypRef Expression
1 s2eqd.1 . . . 4  |-  ( ph  ->  A  =  N )
2 s2eqd.2 . . . 4  |-  ( ph  ->  B  =  O )
3 s3eqd.3 . . . 4  |-  ( ph  ->  C  =  P )
4 s4eqd.4 . . . 4  |-  ( ph  ->  D  =  Q )
5 s5eqd.5 . . . 4  |-  ( ph  ->  E  =  R )
61, 2, 3, 4, 5s5eqd 11305 . . 3  |-  ( ph  ->  <" A B C D E ">  =  <" N O P Q R "> )
7 s6eqd.6 . . . 4  |-  ( ph  ->  F  =  S )
87s1eqd 11153 . . 3  |-  ( ph  ->  <" F ">  =  <" S "> )
96, 8oveq12d 6019 . 2  |-  ( ph  ->  ( <" A B C D E "> ++  <" F "> )  =  ( <" N O P Q R "> ++  <" S "> ) )
10 df-s6 11292 . 2  |-  <" A B C D E F ">  =  (
<" A B C D E "> ++  <" F "> )
11 df-s6 11292 . 2  |-  <" N O P Q R S ">  =  (
<" N O P Q R "> ++  <" S "> )
129, 10, 113eqtr4g 2287 1  |-  ( ph  ->  <" A B C D E F ">  =  <" N O P Q R S "> )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395  (class class class)co 6001   ++ cconcat 11125   <"cs1 11148   <"cs5 11284   <"cs6 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-s1 11149  df-s2 11288  df-s3 11289  df-s4 11290  df-s5 11291  df-s6 11292
This theorem is referenced by:  s7eqd  11307
  Copyright terms: Public domain W3C validator