![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcang | GIF version |
Description: Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.) |
Ref | Expression |
---|---|
sbcang | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2988 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝐴 / 𝑥](𝜑 ∧ 𝜓))) | |
2 | dfsbcq2 2988 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | dfsbcq2 2988 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
4 | 2, 3 | anbi12d 473 | . 2 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
5 | sban 1971 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
6 | 1, 4, 5 | vtoclbg 2821 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 [wsb 1773 ∈ wcel 2164 [wsbc 2985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sbc 2986 |
This theorem is referenced by: sbcabel 3067 csbunig 3843 csbxpg 4740 |
Copyright terms: Public domain | W3C validator |