ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfng Unicode version

Theorem sbcfng 5401
Description: Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfng  |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
Distinct variable groups:    x, V    x, X
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem sbcfng
StepHypRef Expression
1 df-fn 5257 . . . 4  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
21a1i 9 . . 3  |-  ( X  e.  V  ->  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) ) )
32sbcbidv 3044 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [. X  /  x ]. ( Fun  F  /\  dom  F  =  A ) ) )
4 sbcfung 5278 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. Fun  F  <->  Fun  [_ X  /  x ]_ F ) )
5 sbceqg 3096 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  x ]. dom  F  =  A  <->  [_ X  /  x ]_ dom  F  =  [_ X  /  x ]_ A
) )
6 csbdmg 4856 . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  x ]_ dom  F  =  dom  [_ X  /  x ]_ F )
76eqeq1d 2202 . . . . 5  |-  ( X  e.  V  ->  ( [_ X  /  x ]_ dom  F  =  [_ X  /  x ]_ A  <->  dom  [_ X  /  x ]_ F  =  [_ X  /  x ]_ A ) )
85, 7bitrd 188 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. dom  F  =  A  <->  dom  [_ X  /  x ]_ F  =  [_ X  /  x ]_ A ) )
94, 8anbi12d 473 . . 3  |-  ( X  e.  V  ->  (
( [. X  /  x ]. Fun  F  /\  [. X  /  x ]. dom  F  =  A )  <->  ( Fun  [_ X  /  x ]_ F  /\  dom  [_ X  /  x ]_ F  = 
[_ X  /  x ]_ A ) ) )
10 sbcan 3028 . . 3  |-  ( [. X  /  x ]. ( Fun  F  /\  dom  F  =  A )  <->  ( [. X  /  x ]. Fun  F  /\  [. X  /  x ]. dom  F  =  A ) )
11 df-fn 5257 . . 3  |-  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  <->  ( Fun  [_ X  /  x ]_ F  /\  dom  [_ X  /  x ]_ F  =  [_ X  /  x ]_ A ) )
129, 10, 113bitr4g 223 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. ( Fun  F  /\  dom  F  =  A )  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
133, 12bitrd 188 1  |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   [.wsbc 2985   [_csb 3080   dom cdm 4659   Fun wfun 5248    Fn wfn 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-fun 5256  df-fn 5257
This theorem is referenced by:  sbcfg  5402
  Copyright terms: Public domain W3C validator