ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfg Unicode version

Theorem sbcfg 5444
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfg  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
Distinct variable groups:    x, V    x, X
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem sbcfg
StepHypRef Expression
1 df-f 5294 . . . 4  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
21a1i 9 . . 3  |-  ( X  e.  V  ->  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) ) )
32sbcbidv 3064 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B ) ) )
4 sbcfng 5443 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
5 sbcssg 3577 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  x ]. ran  F  C_  B  <->  [_ X  /  x ]_ ran  F  C_  [_ X  /  x ]_ B ) )
6 csbrng 5163 . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  x ]_ ran  F  =  ran  [_ X  /  x ]_ F )
76sseq1d 3230 . . . . 5  |-  ( X  e.  V  ->  ( [_ X  /  x ]_ ran  F  C_  [_ X  /  x ]_ B  <->  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
85, 7bitrd 188 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. ran  F  C_  B  <->  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
94, 8anbi12d 473 . . 3  |-  ( X  e.  V  ->  (
( [. X  /  x ]. F  Fn  A  /\  [. X  /  x ]. ran  F  C_  B
)  <->  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  /\  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) ) )
10 sbcan 3048 . . 3  |-  ( [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B )  <->  (
[. X  /  x ]. F  Fn  A  /\  [. X  /  x ]. ran  F  C_  B
) )
11 df-f 5294 . . 3  |-  ( [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B  <->  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  /\  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
129, 10, 113bitr4g 223 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B
)  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
133, 12bitrd 188 1  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178   [.wsbc 3005   [_csb 3101    C_ wss 3174   ran crn 4694    Fn wfn 5285   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294
This theorem is referenced by:  csbwrdg  11060  ctiunctlemf  12924
  Copyright terms: Public domain W3C validator