ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfg Unicode version

Theorem sbcfg 5356
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfg  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
Distinct variable groups:    x, V    x, X
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem sbcfg
StepHypRef Expression
1 df-f 5212 . . . 4  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
21a1i 9 . . 3  |-  ( X  e.  V  ->  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) ) )
32sbcbidv 3019 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B ) ) )
4 sbcfng 5355 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
5 sbcssg 3530 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  x ]. ran  F  C_  B  <->  [_ X  /  x ]_ ran  F  C_  [_ X  /  x ]_ B ) )
6 csbrng 5082 . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  x ]_ ran  F  =  ran  [_ X  /  x ]_ F )
76sseq1d 3182 . . . . 5  |-  ( X  e.  V  ->  ( [_ X  /  x ]_ ran  F  C_  [_ X  /  x ]_ B  <->  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
85, 7bitrd 188 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. ran  F  C_  B  <->  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
94, 8anbi12d 473 . . 3  |-  ( X  e.  V  ->  (
( [. X  /  x ]. F  Fn  A  /\  [. X  /  x ]. ran  F  C_  B
)  <->  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  /\  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) ) )
10 sbcan 3003 . . 3  |-  ( [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B )  <->  (
[. X  /  x ]. F  Fn  A  /\  [. X  /  x ]. ran  F  C_  B
) )
11 df-f 5212 . . 3  |-  ( [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B  <->  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  /\  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
129, 10, 113bitr4g 223 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B
)  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
133, 12bitrd 188 1  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2146   [.wsbc 2960   [_csb 3055    C_ wss 3127   ran crn 4621    Fn wfn 5203   -->wf 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-id 4287  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212
This theorem is referenced by:  ctiunctlemf  12404
  Copyright terms: Public domain W3C validator