ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfg Unicode version

Theorem sbcfg 5472
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfg  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
Distinct variable groups:    x, V    x, X
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem sbcfg
StepHypRef Expression
1 df-f 5322 . . . 4  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
21a1i 9 . . 3  |-  ( X  e.  V  ->  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) ) )
32sbcbidv 3087 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B ) ) )
4 sbcfng 5471 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
5 sbcssg 3600 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  x ]. ran  F  C_  B  <->  [_ X  /  x ]_ ran  F  C_  [_ X  /  x ]_ B ) )
6 csbrng 5190 . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  x ]_ ran  F  =  ran  [_ X  /  x ]_ F )
76sseq1d 3253 . . . . 5  |-  ( X  e.  V  ->  ( [_ X  /  x ]_ ran  F  C_  [_ X  /  x ]_ B  <->  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
85, 7bitrd 188 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. ran  F  C_  B  <->  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
94, 8anbi12d 473 . . 3  |-  ( X  e.  V  ->  (
( [. X  /  x ]. F  Fn  A  /\  [. X  /  x ]. ran  F  C_  B
)  <->  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  /\  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) ) )
10 sbcan 3071 . . 3  |-  ( [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B )  <->  (
[. X  /  x ]. F  Fn  A  /\  [. X  /  x ]. ran  F  C_  B
) )
11 df-f 5322 . . 3  |-  ( [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B  <->  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  /\  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
129, 10, 113bitr4g 223 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B
)  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
133, 12bitrd 188 1  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   [.wsbc 3028   [_csb 3124    C_ wss 3197   ran crn 4720    Fn wfn 5313   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by:  csbwrdg  11101  ctiunctlemf  13009
  Copyright terms: Public domain W3C validator