ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfg Unicode version

Theorem sbcfg 5403
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfg  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
Distinct variable groups:    x, V    x, X
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem sbcfg
StepHypRef Expression
1 df-f 5259 . . . 4  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
21a1i 9 . . 3  |-  ( X  e.  V  ->  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) ) )
32sbcbidv 3045 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B ) ) )
4 sbcfng 5402 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
5 sbcssg 3556 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  x ]. ran  F  C_  B  <->  [_ X  /  x ]_ ran  F  C_  [_ X  /  x ]_ B ) )
6 csbrng 5128 . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  x ]_ ran  F  =  ran  [_ X  /  x ]_ F )
76sseq1d 3209 . . . . 5  |-  ( X  e.  V  ->  ( [_ X  /  x ]_ ran  F  C_  [_ X  /  x ]_ B  <->  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
85, 7bitrd 188 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. ran  F  C_  B  <->  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
94, 8anbi12d 473 . . 3  |-  ( X  e.  V  ->  (
( [. X  /  x ]. F  Fn  A  /\  [. X  /  x ]. ran  F  C_  B
)  <->  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  /\  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) ) )
10 sbcan 3029 . . 3  |-  ( [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B )  <->  (
[. X  /  x ]. F  Fn  A  /\  [. X  /  x ]. ran  F  C_  B
) )
11 df-f 5259 . . 3  |-  ( [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B  <->  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  /\  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
129, 10, 113bitr4g 223 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B
)  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
133, 12bitrd 188 1  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   [.wsbc 2986   [_csb 3081    C_ wss 3154   ran crn 4661    Fn wfn 5250   -->wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259
This theorem is referenced by:  csbwrdg  10946  ctiunctlemf  12598
  Copyright terms: Public domain W3C validator