ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabf Unicode version

Theorem opelopabf 4339
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4336 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
opelopabf.x  |-  F/ x ps
opelopabf.y  |-  F/ y ch
opelopabf.1  |-  A  e. 
_V
opelopabf.2  |-  B  e. 
_V
opelopabf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopabf.4  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
opelopabf  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ch )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    ch( x, y)

Proof of Theorem opelopabf
StepHypRef Expression
1 opelopabsb 4324 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
2 opelopabf.1 . . 3  |-  A  e. 
_V
3 nfcv 2350 . . . . 5  |-  F/_ x B
4 opelopabf.x . . . . 5  |-  F/ x ps
53, 4nfsbc 3026 . . . 4  |-  F/ x [. B  /  y ]. ps
6 opelopabf.3 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
76sbcbidv 3064 . . . 4  |-  ( x  =  A  ->  ( [. B  /  y ]. ph  <->  [. B  /  y ]. ps ) )
85, 7sbciegf 3037 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  /  y ]. ps ) )
92, 8ax-mp 5 . 2  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  / 
y ]. ps )
10 opelopabf.2 . . 3  |-  B  e. 
_V
11 opelopabf.y . . . 4  |-  F/ y ch
12 opelopabf.4 . . . 4  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
1311, 12sbciegf 3037 . . 3  |-  ( B  e.  _V  ->  ( [. B  /  y ]. ps  <->  ch ) )
1410, 13ax-mp 5 . 2  |-  ( [. B  /  y ]. ps  <->  ch )
151, 9, 143bitri 206 1  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   F/wnf 1484    e. wcel 2178   _Vcvv 2776   [.wsbc 3005   <.cop 3646   {copab 4120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122
This theorem is referenced by:  pofun  4377  fmptco  5769  uchoice  6246
  Copyright terms: Public domain W3C validator