ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbr2g Unicode version

Theorem sbcbr2g 4100
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
Assertion
Ref Expression
sbcbr2g  |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  B R [_ A  /  x ]_ C ) )
Distinct variable groups:    x, B    x, R
Allowed substitution hints:    A( x)    C( x)    D( x)

Proof of Theorem sbcbr2g
StepHypRef Expression
1 sbcbr12g 4098 . 2  |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B R [_ A  /  x ]_ C
) )
2 csbconstg 3106 . . 3  |-  ( A  e.  D  ->  [_ A  /  x ]_ B  =  B )
32breq1d 4053 . 2  |-  ( A  e.  D  ->  ( [_ A  /  x ]_ B R [_ A  /  x ]_ C  <->  B R [_ A  /  x ]_ C ) )
41, 3bitrd 188 1  |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  B R [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2175   [.wsbc 2997   [_csb 3092   class class class wbr 4043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator