ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbr2g GIF version

Theorem sbcbr2g 4090
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
Assertion
Ref Expression
sbcbr2g (𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐵𝑅𝐴 / 𝑥𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem sbcbr2g
StepHypRef Expression
1 sbcbr12g 4088 . 2 (𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶))
2 csbconstg 3098 . . 3 (𝐴𝐷𝐴 / 𝑥𝐵 = 𝐵)
32breq1d 4043 . 2 (𝐴𝐷 → (𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶𝐵𝑅𝐴 / 𝑥𝐶))
41, 3bitrd 188 1 (𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐵𝑅𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2167  [wsbc 2989  csb 3084   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator