Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcbr2g | GIF version |
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
Ref | Expression |
---|---|
sbcbr2g | ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr12g 4037 | . 2 ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | |
2 | csbconstg 3059 | . . 3 ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | 2 | breq1d 3992 | . 2 ⊢ (𝐴 ∈ 𝐷 → (⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) |
4 | 1, 3 | bitrd 187 | 1 ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2136 [wsbc 2951 ⦋csb 3045 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |