| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcbr2g | GIF version | ||
| Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| Ref | Expression |
|---|---|
| sbcbr2g | ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbr12g 4088 | . 2 ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | |
| 2 | csbconstg 3098 | . . 3 ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
| 3 | 2 | breq1d 4043 | . 2 ⊢ (𝐴 ∈ 𝐷 → (⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) |
| 4 | 1, 3 | bitrd 188 | 1 ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 [wsbc 2989 ⦋csb 3084 class class class wbr 4033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |